OGS
ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim > Class Template Reference

Detailed Description

template<typename ShapeFunction, int GlobalDim>
class ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >

Definition at line 67 of file LiquidFlowLocalAssembler.h.

#include <LiquidFlowLocalAssembler.h>

Inheritance diagram for ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >:
[legend]
Collaboration diagram for ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >:
[legend]

Classes

struct  AnisotropicCalculator
struct  IsotropicCalculator

Public Member Functions

 LiquidFlowLocalAssembler (MeshLib::Element const &element, std::size_t const, NumLib::GenericIntegrationMethod const &integration_method, bool const is_axially_symmetric, LiquidFlowData const &process_data)
void assemble (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
Eigen::Vector3d getFlux (MathLib::Point3d const &p_local_coords, double const t, std::vector< double > const &local_x) const override
Eigen::Map< const Eigen::RowVectorXd > getShapeMatrix (const unsigned integration_point) const override
 Provides the shape matrix at the given integration point.
std::vector< double > const & getIntPtDarcyVelocity (const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &velocity_cache) const override
Public Member Functions inherited from ProcessLib::LocalAssemblerInterface
virtual ~LocalAssemblerInterface ()=default
virtual void setInitialConditions (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, int const process_id)
virtual void initialize (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
virtual void preAssemble (double const, double const, std::vector< double > const &)
virtual void assembleForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
virtual void assembleWithJacobian (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
virtual void assembleWithJacobianForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
virtual void computeSecondaryVariable (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
virtual void preTimestep (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table, GlobalVector const &x, double const t, double const delta_t)
virtual void postTimestep (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
void postNonLinearSolver (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
virtual Eigen::Vector3d getFlux (MathLib::Point3d const &, double const, std::vector< std::vector< double > > const &) const
 Fits to staggered scheme.
virtual std::optional< VectorSegmentgetVectorDeformationSegment () const
Public Member Functions inherited from NumLib::ExtrapolatableElement
virtual ~ExtrapolatableElement ()=default

Private Types

using ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
using ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
using LocalAssemblerTraits
using NodalMatrixType = typename LocalAssemblerTraits::LocalMatrix
using NodalVectorType = typename LocalAssemblerTraits::LocalVector
using NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
using GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
using GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType
using GlobalDimNodalMatrixType

Private Member Functions

template<typename LaplacianGravityVelocityCalculator>
void assembleMatrixAndVector (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
template<typename LaplacianGravityVelocityCalculator, typename VelocityCacheType>
void computeProjectedDarcyVelocity (const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const
template<typename VelocityCacheType>
void computeDarcyVelocity (bool const is_scalar_permeability, const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const

Private Attributes

MeshLib::Element const & _element
NumLib::GenericIntegrationMethod const & _integration_method
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data
const LiquidFlowData_process_data

Member Typedef Documentation

◆ GlobalDimMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType
private

Definition at line 79 of file LiquidFlowLocalAssembler.h.

◆ GlobalDimNodalMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::GlobalDimNodalMatrixType
private
Initial value:
MatrixType< GlobalDim, ShapeFunction::NPOINTS > GlobalDimNodalMatrixType

Definition at line 80 of file LiquidFlowLocalAssembler.h.

◆ GlobalDimVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
private

Definition at line 78 of file LiquidFlowLocalAssembler.h.

◆ LocalAssemblerTraits

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::LocalAssemblerTraits
private
Initial value:
ShapeMatricesType, ShapeFunction::NPOINTS, NUM_NODAL_DOF, GlobalDim>
ShapeMatrixPolicyType< ShapeFunction, GlobalDim > ShapeMatricesType
detail::LocalAssemblerTraitsFixed< ShpPol, NNodes, NodalDOF, Dim > LocalAssemblerTraits

Definition at line 72 of file LiquidFlowLocalAssembler.h.

◆ NodalMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::NodalMatrixType = typename LocalAssemblerTraits::LocalMatrix
private

Definition at line 75 of file LiquidFlowLocalAssembler.h.

◆ NodalRowVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
private

Definition at line 77 of file LiquidFlowLocalAssembler.h.

◆ NodalVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::NodalVectorType = typename LocalAssemblerTraits::LocalVector
private

Definition at line 76 of file LiquidFlowLocalAssembler.h.

◆ ShapeMatrices

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
private

Definition at line 70 of file LiquidFlowLocalAssembler.h.

◆ ShapeMatricesType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
private

Definition at line 69 of file LiquidFlowLocalAssembler.h.

Constructor & Destructor Documentation

◆ LiquidFlowLocalAssembler()

template<typename ShapeFunction, int GlobalDim>
ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::LiquidFlowLocalAssembler ( MeshLib::Element const & element,
std::size_t const ,
NumLib::GenericIntegrationMethod const & integration_method,
bool const is_axially_symmetric,
LiquidFlowData const & process_data )
inline

Definition at line 84 of file LiquidFlowLocalAssembler.h.

93 {
94 unsigned const n_integration_points =
95 _integration_method.getNumberOfPoints();
97
98 auto const& shape_matrices =
102
104 pos.setElementID(_element.getID());
105
106 double const aperture_size =
107 (_element.getDimension() == 3u)
108 ? 1.0
109 : _process_data.aperture_size(0.0, pos)[0];
110
111 for (unsigned ip = 0; ip < n_integration_points; ip++)
112 {
113 _ip_data.emplace_back(
115 _integration_method.getWeightedPoint(ip).getWeight() *
116 shape_matrices[ip].integralMeasure *
118 }
119 }
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data
ShapeMatrixPolicyType< ShapeFunction, GlobalDim > ShapeMatricesType
NumLib::GenericIntegrationMethod const & _integration_method

References _element, _integration_method, _ip_data, _process_data, NumLib::initShapeMatrices(), and ParameterLib::SpatialPosition::setElementID().

Member Function Documentation

◆ assemble()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::assemble ( double const t,
double const dt,
std::vector< double > const & local_x,
std::vector< double > const & ,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
overridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 27 of file LiquidFlowLocalAssembler-impl.h.

32{
33 // Dummy integration point
34 unsigned const ip = 0;
35 // auto const& ip_data = _ip_data[ip];
36 auto const& Ns = _process_data.shape_matrix_cache
37 .NsHigherOrder<typename ShapeFunction::MeshElement>();
38 auto const& N = Ns[ip];
39
41 std::nullopt, _element.getID(),
44 _element, N))};
45
46 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
48 vars.temperature =
50 .template value<double>(vars, pos, t, dt);
51 vars.liquid_phase_pressure = std::numeric_limits<double>::quiet_NaN();
55 vars, pos, t, dt));
56 // Note: For Inclined 1D in 2D/3D or 2D element in 3D, the first item in
57 // the assert must be changed to permeability.rows() ==
58 // _element->getDimension()
59 assert(permeability.rows() == GlobalDim || permeability.rows() == 1);
60
61 if (permeability.size() == 1)
62 { // isotropic or 1D problem.
65 }
66 else
67 {
70 }
71}
void assembleMatrixAndVector(double const t, double const dt, std::vector< double > const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
typename ShapeMatricesType::GlobalDimMatrixType GlobalDimMatrixType
Eigen::Matrix< double, GlobalDim, GlobalDim > formEigenTensor(MaterialPropertyLib::PropertyDataType const &values)

References _element, _process_data, assembleMatrixAndVector(), MaterialPropertyLib::formEigenTensor(), NumLib::interpolateCoordinates(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::reference_temperature, and MaterialPropertyLib::VariableArray::temperature.

◆ assembleMatrixAndVector()

template<typename ShapeFunction, int GlobalDim>
template<typename LaplacianGravityVelocityCalculator>
void ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::assembleMatrixAndVector ( double const t,
double const dt,
std::vector< double > const & local_x,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
private

Definition at line 121 of file LiquidFlowLocalAssembler-impl.h.

127{
128 auto const local_matrix_size = local_x.size();
130
137 const auto local_p_vec =
139
140 unsigned const n_integration_points =
141 _integration_method.getNumberOfPoints();
142
144 pos.setElementID(_element.getID());
145
146 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
147 auto const& fluid_phase = fluidPhase(medium);
148
150 auto& phase_pressure = medium.hasPhase("Gas") ? vars.gas_phase_pressure
151 : vars.liquid_phase_pressure;
152
154 _process_data.element_rotation_matrices[_element.getID()] *
155 _process_data.element_rotation_matrices[_element.getID()].transpose() *
156 _process_data.specific_body_force;
157
158 auto const& Ns = _process_data.shape_matrix_cache
159 .NsHigherOrder<typename ShapeFunction::MeshElement>();
160
161 for (unsigned ip = 0; ip < n_integration_points; ip++)
162 {
163 auto const& ip_data = _ip_data[ip];
164 auto const& N = Ns[ip];
165
168 std::nullopt, _element.getID(),
171 _element, N))};
172
173 vars.temperature =
175 .template value<double>(vars, pos, t, dt);
176
177 auto const [fluid_density, viscosity] =
180
181 auto const porosity =
183 .template value<double>(vars, pos, t, dt);
184 auto const specific_storage =
186 .template value<double>(vars, pos, t, dt);
187
188 auto const get_drho_dp = [&]()
189 {
191 .template dValue<double>(vars, _process_data.phase_variable,
192 pos, t, dt);
193 };
194 auto const storage =
195 _process_data.equation_balance_type == EquationBalanceType::volume
198
199 double const scaling_factor =
200 _process_data.equation_balance_type == EquationBalanceType::volume
201 ? 1.0
203 // Assemble mass matrix, M
204 local_M.noalias() += scaling_factor * storage * N.transpose() * N *
205 ip_data.integration_weight;
206
210 vars, pos, t, dt));
211
212 // Assemble Laplacian, K, and RHS by the gravitational term
216 _process_data.has_gravity);
217 }
218}
typename ShapeMatricesType::GlobalDimVectorType GlobalDimVectorType
std::tuple< double, double > getFluidDensityAndViscosity(double const t, double const dt, ParameterLib::SpatialPosition const &pos, MaterialPropertyLib::Phase const &fluid_phase, MaterialPropertyLib::VariableArray &vars)
It computes fluid density and viscosity for single phase flow model.
Eigen::Map< Vector > createZeroedVector(std::vector< double > &data, Eigen::VectorXd::Index size)
Eigen::Map< const Vector > toVector(std::vector< double > const &data, Eigen::VectorXd::Index size)
Creates an Eigen mapped vector from the given data vector.
Eigen::Map< Matrix > createZeroedMatrix(std::vector< double > &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)

References _element, _integration_method, _ip_data, _process_data, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), MaterialPropertyLib::density, MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::gas_phase_pressure, MaterialPropertyLib::getFluidDensityAndViscosity(), NumLib::interpolateCoordinates(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::porosity, MaterialPropertyLib::reference_temperature, ParameterLib::SpatialPosition::setElementID(), MaterialPropertyLib::storage, MaterialPropertyLib::VariableArray::temperature, MathLib::toVector(), and ProcessLib::LiquidFlow::volume.

Referenced by assemble().

◆ computeDarcyVelocity()

template<typename ShapeFunction, int GlobalDim>
template<typename VelocityCacheType>
void ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::computeDarcyVelocity ( bool const is_scalar_permeability,
const double t,
const double dt,
std::vector< double > const & local_x,
ParameterLib::SpatialPosition const & pos,
VelocityCacheType & darcy_velocity_at_ips ) const
private

Definition at line 222 of file LiquidFlowLocalAssembler-impl.h.

227{
229 { // isotropic or 1D problem.
232 }
233 else
234 {
237 }
238}
void computeProjectedDarcyVelocity(const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const

References computeProjectedDarcyVelocity().

Referenced by getIntPtDarcyVelocity().

◆ computeProjectedDarcyVelocity()

template<typename ShapeFunction, int GlobalDim>
template<typename LaplacianGravityVelocityCalculator, typename VelocityCacheType>
void ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::computeProjectedDarcyVelocity ( const double t,
const double dt,
std::vector< double > const & local_x,
ParameterLib::SpatialPosition const & pos,
VelocityCacheType & darcy_velocity_at_ips ) const
private

Definition at line 301 of file LiquidFlowLocalAssembler-impl.h.

306{
307 auto const local_matrix_size = local_x.size();
309
310 const auto local_p_vec =
312
313 unsigned const n_integration_points =
314 _integration_method.getNumberOfPoints();
315
316 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
317 auto const& fluid_phase = fluidPhase(medium);
318
320 auto& phase_pressure = medium.hasPhase("Gas") ? vars.gas_phase_pressure
321 : vars.liquid_phase_pressure;
322
324 _process_data.element_rotation_matrices[_element.getID()] *
325 _process_data.element_rotation_matrices[_element.getID()].transpose() *
326 _process_data.specific_body_force;
327
328 auto const& Ns = _process_data.shape_matrix_cache
329 .NsHigherOrder<typename ShapeFunction::MeshElement>();
330
331 for (unsigned ip = 0; ip < n_integration_points; ip++)
332 {
333 auto const& ip_data = _ip_data[ip];
334 auto const& N = Ns[ip];
335
338 std::nullopt, _element.getID(),
341 _element, N))};
342
343 vars.temperature =
345 .template value<double>(vars, pos, t, dt);
346 auto const [fluid_density, viscosity] =
349
353 vars, pos, t, dt));
354
359 }
360}

References _element, _integration_method, _ip_data, _process_data, MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::gas_phase_pressure, MaterialPropertyLib::getFluidDensityAndViscosity(), NumLib::interpolateCoordinates(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::reference_temperature, MaterialPropertyLib::VariableArray::temperature, and MathLib::toVector().

Referenced by computeDarcyVelocity().

◆ getFlux()

template<typename ShapeFunction, int GlobalDim>
Eigen::Vector3d ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::getFlux ( MathLib::Point3d const & p_local_coords,
double const t,
std::vector< double > const & local_x ) const
overridevirtual

Computes the flux in the point p_local_coords that is given in local coordinates using the values from local_x.

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 74 of file LiquidFlowLocalAssembler-impl.h.

77{
78 // TODO (tf) Temporary value not used by current material models. Need
79 // extension of getFlux interface
81
82 // Note: Axial symmetry is set to false here, because we only need dNdx
83 // here, which is not affected by axial symmetry.
84 auto const shape_matrices =
87 false /*is_axially_symmetric*/,
89
90 // create pos object to access the correct media property
92 pos.setElementID(_element.getID());
93
94 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
95 auto const& fluid_phase = fluidPhase(medium);
96
98
99 double pressure = 0.0;
101 vars.liquid_phase_pressure = pressure;
102
106 vars, pos, t, dt));
107 auto const viscosity =
109 .template value<double>(vars, pos, t, dt);
110
111 Eigen::Vector3d flux(0.0, 0.0, 0.0);
112 flux.head<GlobalDim>() =
115
116 return flux;
117}
void shapeFunctionInterpolate(const NodalValues &, const ShapeMatrix &)

References _element, _process_data, NumLib::computeShapeMatrices(), MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), and MaterialPropertyLib::viscosity.

◆ getIntPtDarcyVelocity()

template<typename ShapeFunction, int GlobalDim>
std::vector< double > const & ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::getIntPtDarcyVelocity ( const double t,
std::vector< GlobalVector * > const & x,
std::vector< NumLib::LocalToGlobalIndexMap const * > const & dof_table,
std::vector< double > & velocity_cache ) const
overridevirtual

Implements ProcessLib::LiquidFlow::LiquidFlowLocalAssemblerInterface.

Definition at line 242 of file LiquidFlowLocalAssembler-impl.h.

247{
248 // TODO (tf) Temporary value not used by current material models. Need
249 // extension of secondary variable interface.
251
252 constexpr int process_id = 0;
253 auto const indices =
255 auto const local_x = x[process_id]->get(indices);
256 auto const n_integration_points = _integration_method.getNumberOfPoints();
257 velocity_cache.clear();
258
259 // Dummy integration point
260 unsigned const ip = 0;
261 // auto const& ip_data = _ip_data[ip];
262 auto const& Ns = _process_data.shape_matrix_cache
263 .NsHigherOrder<typename ShapeFunction::MeshElement>();
264 auto const& N = Ns[ip];
265
267 std::nullopt, _element.getID(),
270 _element, N))};
271
272 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
274 vars.temperature =
276 .template value<double>(vars, pos, t, dt);
277 vars.liquid_phase_pressure = std::numeric_limits<double>::quiet_NaN();
278
282 vars, pos, t, dt));
283
284 assert(permeability.rows() == GlobalDim || permeability.rows() == 1);
285
286 bool const is_scalar_permeability = (permeability.size() == 1);
287
291
294
295 return velocity_cache;
296}
void computeDarcyVelocity(bool const is_scalar_permeability, const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const
std::vector< GlobalIndexType > getIndices(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)

References _element, _integration_method, _process_data, computeDarcyVelocity(), MathLib::createZeroedMatrix(), MaterialPropertyLib::formEigenTensor(), NumLib::getIndices(), NumLib::interpolateCoordinates(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::reference_temperature, and MaterialPropertyLib::VariableArray::temperature.

◆ getShapeMatrix()

template<typename ShapeFunction, int GlobalDim>
Eigen::Map< const Eigen::RowVectorXd > ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::getShapeMatrix ( const unsigned integration_point) const
inlineoverridevirtual

Provides the shape matrix at the given integration point.

Implements NumLib::ExtrapolatableElement.

Definition at line 134 of file LiquidFlowLocalAssembler.h.

136 {
137 auto const& N =
138 _process_data.shape_matrix_cache
139 .NsHigherOrder<typename ShapeFunction::MeshElement>();
140
141 // assumes N is stored contiguously in memory
144 }

References _process_data.

Member Data Documentation

◆ _element

◆ _integration_method

◆ _ip_data

◆ _process_data


The documentation for this class was generated from the following files: