26template <
typename ShapeFunction,
int DisplacementDim>
32 bool const is_axially_symmetric,
39 unsigned const n_integration_points =
42 _ip_data.reserve(n_integration_points);
45 auto const shape_matrices =
47 DisplacementDim>(e, is_axially_symmetric,
53 for (
unsigned ip = 0; ip < n_integration_points; ip++)
55 _ip_data.emplace_back(solid_material);
57 ip_data.integration_weight =
59 shape_matrices[ip].integralMeasure * shape_matrices[ip].detJ;
61 static const int kelvin_vector_size =
64 ip_data.sigma.setZero(kelvin_vector_size);
65 ip_data.eps.setZero(kelvin_vector_size);
68 ip_data.sigma_prev.resize(kelvin_vector_size);
69 ip_data.eps_prev.resize(kelvin_vector_size);
71 ip_data.eps_m.setZero(kelvin_vector_size);
72 ip_data.eps_m_prev.setZero(kelvin_vector_size);
75 ip_data.N = shape_matrices[ip].N;
76 ip_data.dNdx = shape_matrices[ip].dNdx;
82template <
typename ShapeFunction,
int DisplacementDim>
88 unsigned const n_integration_points =
93 for (
unsigned ip = 0; ip < n_integration_points; ip++)
96 auto const& dNdx =
_ip_data[ip].dNdx;
108 ShapeFunction::NPOINTS,
112 _ip_data[ip].eps.noalias() = B * local_u;
116template <
typename ShapeFunction,
int DisplacementDim>
119 double const* values,
120 int const integration_order)
122 if (integration_order !=
126 "Setting integration point initial conditions; The integration "
127 "order of the local assembler for element {:d} is different from "
128 "the integration order in the initial condition.",
136 if (name ==
"epsilon")
140 if (name ==
"epsilon_m")
148template <
typename ShapeFunction,
int DisplacementDim>
151 std::vector<double>
const& local_x,
152 std::vector<double>
const& local_x_prev,
153 std::vector<double>& local_rhs_data,
154 std::vector<double>& local_Jac_data)
156 auto const local_matrix_size = local_x.size();
159 auto T = Eigen::Map<
typename ShapeMatricesType::template VectorType<
163 auto u = Eigen::Map<
typename ShapeMatricesType::template VectorType<
166 bool const is_u_non_zero = u.norm() > 0.0;
168 auto T_prev = Eigen::Map<
typename ShapeMatricesType::template VectorType<
173 local_Jac_data, local_matrix_size, local_matrix_size);
189 unsigned const n_integration_points =
198 auto const& solid_phase = medium->phase(
"Solid");
200 for (
unsigned ip = 0; ip < n_integration_points; ip++)
202 auto const& w =
_ip_data[ip].integration_weight;
204 auto const& dNdx =
_ip_data[ip].dNdx;
215 ShapeFunction::NPOINTS,
220 auto const& sigma_prev =
_ip_data[ip].sigma_prev;
223 auto const& eps_prev =
_ip_data[ip].eps_prev;
226 auto const& eps_m_prev =
_ip_data[ip].eps_m_prev;
228 auto& state =
_ip_data[ip].material_state_variables;
230 const double T_ip = N.dot(T);
231 double const T_prev_ip = N.dot(T_prev);
234 auto const solid_linear_thermal_expansivity_vector =
239 .value(variables, x_position, t, dt));
243 solid_linear_thermal_expansivity_vector * (T_ip - T_prev_ip);
253 eps.noalias() = B * u;
256 eps_m.noalias() = eps_m_prev + eps - eps_prev - dthermal_strain;
270 auto&& solution =
_ip_data[ip].solid_material.integrateStress(
271 variables_prev, variables, t, x_position, dt, *state);
275 OGS_FATAL(
"Computation of local constitutive relation failed.");
279 std::tie(sigma, state, C) = std::move(*solution);
282 .template block<displacement_size, displacement_size>(
284 .noalias() += B.transpose() * C * B * w;
286 typename ShapeMatricesType::template MatrixType<DisplacementDim,
288 N_u = ShapeMatricesType::template MatrixType<
292 for (
int i = 0; i < DisplacementDim; ++i)
301 .template value<double>(variables, x_position, t, dt);
306 (B.transpose() * sigma - N_u.transpose() * rho_s * b) * w;
311 auto const alpha_T_tensor =
313 solid_linear_thermal_expansivity_vector);
314 KuT.noalias() += B.transpose() * (C * alpha_T_tensor) * N * w;
316 if (
_ip_data[ip].solid_material.getConstitutiveModel() ==
321 const double creep_coefficient =
322 _ip_data[ip].solid_material.getTemperatureRelatedCoefficient(
323 t, dt, x_position, T_ip, norm_s);
324 KuT.noalias() += creep_coefficient * B.transpose() * s * N * w;
334 .value(variables, x_position, t, dt);
339 KTT.noalias() += dNdx.transpose() * thermal_conductivity * dNdx * w;
345 .template value<double>(variables, x_position, t, dt);
346 DTT.noalias() += N.transpose() * rho_s * c * N * w;
353 .noalias() += KTT + DTT / dt;
362 .noalias() -= KTT * T + DTT * (T - T_prev) / dt;
365template <
typename ShapeFunction,
int DisplacementDim>
368 Eigen::VectorXd
const& local_x,
369 Eigen::VectorXd
const& local_x_prev,
370 int const process_id,
371 std::vector<double>& local_b_data,
372 std::vector<double>& local_Jac_data)
378 t, dt, local_x, local_x_prev, local_b_data, local_Jac_data);
384 local_b_data, local_Jac_data);
387template <
typename ShapeFunction,
int DisplacementDim>
390 const double t,
double const dt, Eigen::VectorXd
const& local_x,
391 Eigen::VectorXd
const& local_x_prev, std::vector<double>& local_b_data,
392 std::vector<double>& local_Jac_data)
397 auto const local_T_prev =
402 bool const is_u_non_zero = local_u.norm() > 0.0;
410 typename ShapeMatricesType::template VectorType<displacement_size>>(
413 unsigned const n_integration_points =
419 auto const& solid_phase = medium->phase(
"Solid");
421 for (
unsigned ip = 0; ip < n_integration_points; ip++)
423 auto const& w =
_ip_data[ip].integration_weight;
425 auto const& dNdx =
_ip_data[ip].dNdx;
437 ShapeFunction::NPOINTS,
442 auto const& sigma_prev =
_ip_data[ip].sigma_prev;
445 auto const& eps_prev =
_ip_data[ip].eps_prev;
448 auto const& eps_m_prev =
_ip_data[ip].eps_m_prev;
450 auto& state =
_ip_data[ip].material_state_variables;
452 const double T_ip = N.dot(local_T);
454 double const dT_ip = T_ip - N.dot(local_T_prev);
464 eps.noalias() = B * local_u;
468 auto const solid_linear_thermal_expansivity_vector =
473 .value(variables, x_position, t, dt));
476 dthermal_strain = solid_linear_thermal_expansivity_vector * dT_ip;
478 eps_m.noalias() = eps_m_prev + eps - eps_prev - dthermal_strain;
491 auto&& solution =
_ip_data[ip].solid_material.integrateStress(
492 variables_prev, variables, t, x_position, dt, *state);
496 OGS_FATAL(
"Computation of local constitutive relation failed.");
500 std::tie(sigma, state, C) = std::move(*solution);
502 local_Jac.noalias() += B.transpose() * C * B * w;
504 typename ShapeMatricesType::template MatrixType<DisplacementDim,
506 N_u = ShapeMatricesType::template MatrixType<
510 for (
int i = 0; i < DisplacementDim; ++i)
519 .template value<double>(variables, x_position, t, dt);
522 local_rhs.noalias() -=
523 (B.transpose() * sigma - N_u.transpose() * rho_s * b) * w;
527template <
typename ShapeFunction,
int DisplacementDim>
530 const double t,
double const dt, Eigen::VectorXd
const& local_x,
531 Eigen::VectorXd
const& local_x_prev, std::vector<double>& local_b_data,
532 std::vector<double>& local_Jac_data)
537 auto const local_T_prev =
546 typename ShapeMatricesType::template VectorType<temperature_size>>(
555 unsigned const n_integration_points =
559 auto const& solid_phase = medium->phase(
"Solid");
562 for (
unsigned ip = 0; ip < n_integration_points; ip++)
564 auto const& w =
_ip_data[ip].integration_weight;
566 auto const& dNdx =
_ip_data[ip].dNdx;
574 const double T_ip = N.dot(local_T);
579 .template value<double>(variables, x_position, t, dt);
582 .template value<double>(variables, x_position, t, dt);
584 mass.noalias() += N.transpose() * rho_s * c_p * N * w;
590 .value(variables, x_position, t, dt);
595 laplace.noalias() += dNdx.transpose() * thermal_conductivity * dNdx * w;
597 local_Jac.noalias() += laplace + mass / dt;
599 local_rhs.noalias() -=
600 laplace * local_T + mass * (local_T - local_T_prev) / dt;
603template <
typename ShapeFunction,
int DisplacementDim>
606 double const* values)
612template <
typename ShapeFunction,
int DisplacementDim>
616 constexpr int kelvin_vector_size =
620 [
this](std::vector<double>& values)
624template <
typename ShapeFunction,
int DisplacementDim>
625std::vector<double>
const&
628 std::vector<GlobalVector*>
const& ,
629 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& ,
630 std::vector<double>& cache)
const
636template <
typename ShapeFunction,
int DisplacementDim>
639 double const* values)
645template <
typename ShapeFunction,
int DisplacementDim>
649 constexpr int kelvin_vector_size =
653 [
this](std::vector<double>& values)
657template <
typename ShapeFunction,
int DisplacementDim>
658std::vector<double>
const&
661 std::vector<GlobalVector*>
const& ,
662 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& ,
663 std::vector<double>& cache)
const
669template <
typename ShapeFunction,
int DisplacementDim>
670std::vector<double>
const&
674 std::vector<GlobalVector*>
const& ,
675 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& ,
676 std::vector<double>& cache)
const
682template <
typename ShapeFunction,
int DisplacementDim>
689template <
typename ShapeFunction,
int DisplacementDim>
693 constexpr int kelvin_vector_size =
697 [
this](std::vector<double>& values)
701template <
typename ShapeFunction,
int DisplacementDim>
708template <
typename ShapeFunction,
int DisplacementDim>
717template <
typename ShapeFunction,
int DisplacementDim>
719 DisplacementDim>::MaterialStateVariables
const&
723 return *
_ip_data[integration_point].material_state_variables;
KelvinVector mechanical_strain
std::size_t getID() const
Returns the ID of the element.
void setElementID(std::size_t element_id)
std::optional< MathLib::Point3d > const getCoordinates() const
MatrixType< _kelvin_vector_size, _number_of_dof > BMatrixType
Local assembler of ThermoMechanics process.
std::vector< double > getEpsilonMechanical() const override
std::vector< double > const & getIntPtEpsilonMechanical(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const override
SecondaryData< typename ShapeMatrices::ShapeType > _secondary_data
std::size_t setIPDataInitialConditions(std::string_view const name, double const *values, int const integration_order) override
Returns number of read integration points.
std::size_t setSigma(double const *values)
std::vector< double > const & getIntPtSigma(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const override
MeshLib::Element const & _element
static const int temperature_size
static const int displacement_size
ThermoMechanicsLocalAssembler(ThermoMechanicsLocalAssembler const &)=delete
MaterialLib::Solids::MechanicsBase< DisplacementDim >::MaterialStateVariables const & getMaterialStateVariablesAt(unsigned integration_point) const override
std::size_t setEpsilonMechanical(double const *values)
ShapeMatrixPolicyType< ShapeFunction, DisplacementDim > ShapeMatricesType
ThermoMechanicsProcessData< DisplacementDim > & _process_data
unsigned getNumberOfIntegrationPoints() const override
bool const _is_axially_symmetric
NumLib::GenericIntegrationMethod const & _integration_method
static const int displacement_index
void assembleWithJacobianForHeatConductionEquations(const double t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
void assembleWithJacobianForDeformationEquations(const double t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
std::size_t setEpsilon(double const *values)
void assembleWithJacobianForStaggeredScheme(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data) override
int getMaterialID() const override
typename ShapeMatricesType::GlobalDimMatrixType GlobalDimMatrixType
std::vector< double > getEpsilon() const override
static const int temperature_index
std::vector< double > getSigma() const override
std::vector< IpData, Eigen::aligned_allocator< IpData > > _ip_data
void setInitialConditionsConcrete(Eigen::VectorXd const local_x, double const t, int const process_id) override
std::vector< double > const & getIntPtEpsilon(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const override
void assembleWithJacobian(double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &local_x_prev, std::vector< double > &local_rhs_data, std::vector< double > &local_Jac_data) override
auto & selectSolidConstitutiveRelation(SolidMaterialsMap const &constitutive_relations, MeshLib::PropertyVector< int > const *const material_ids, std::size_t const element_id)
MathLib::KelvinVector::KelvinVectorType< GlobalDim > formKelvinVector(MaterialPropertyLib::PropertyDataType const &values)
A function to form a Kelvin vector from strain or stress alike property like thermal expansivity for ...
Eigen::Matrix< double, GlobalDim, GlobalDim > formEigenTensor(MaterialPropertyLib::PropertyDataType const &values)
Eigen::Matrix< double, 4, 1 > kelvinVectorToSymmetricTensor(Eigen::Matrix< double, 4, 1, Eigen::ColMajor, 4, 1 > const &v)
constexpr int kelvin_vector_dimensions(int const displacement_dim)
Kelvin vector dimensions for given displacement dimension.
Eigen::Matrix< double, kelvin_vector_dimensions(DisplacementDim), 1, Eigen::ColMajor > KelvinVectorType
Eigen::Matrix< double, kelvin_vector_dimensions(DisplacementDim), kelvin_vector_dimensions(DisplacementDim), Eigen::RowMajor > KelvinMatrixType
Eigen::Map< Vector > createZeroedVector(std::vector< double > &data, Eigen::VectorXd::Index size)
Eigen::Map< Matrix > createZeroedMatrix(std::vector< double > &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)
std::vector< typename ShapeMatricesType::ShapeMatrices, Eigen::aligned_allocator< typename ShapeMatricesType::ShapeMatrices > > initShapeMatrices(MeshLib::Element const &e, bool const is_axially_symmetric, IntegrationMethod const &integration_method)
std::array< double, 3 > interpolateCoordinates(MeshLib::Element const &e, typename ShapeMatricesType::ShapeMatrices::ShapeType const &N)
BMatrixType computeBMatrix(DNDX_Type const &dNdx, N_Type const &N, const double radius, const bool is_axially_symmetric)
Fills a B-matrix based on given shape function dN/dx values.
std::vector< double > transposeInPlace(StoreValuesFunction const &store_values_function)
std::vector< double > const & getIntegrationPointKelvinVectorData(IntegrationPointDataVector const &ip_data_vector, MemberType IpData::*const member, std::vector< double > &cache)
std::size_t setIntegrationPointKelvinVectorData(double const *values, IntegrationPointDataVector &ip_data_vector, MemberType IpData::*const member)
MatrixType< ShapeFunction::NPOINTS, ShapeFunction::NPOINTS > NodalMatrixType
static double FrobeniusNorm(Eigen::Matrix< double, KelvinVectorSize, 1 > const &deviatoric_v)
Get the norm of the deviatoric stress.
static Eigen::Matrix< double, KelvinVectorSize, KelvinVectorSize > const deviatoric_projection
BMatricesType::KelvinVectorType sigma
BMatricesType::KelvinVectorType eps_m
BMatricesType::KelvinVectorType eps