OGS
square.prj
<
OpenGeoSysProject
>
<
mesh
>square_1x1_quad8_1e0.vtu</mesh>
<
geometry
>square_1x1.gml</geometry>
<
processes
>
<
process
>
<
name
>process</name>
<
type
>
TH2M
</type>
<
integration_order
>3</integration_order>
<
jacobian_assembler
>
<
type
>
CentralDifferences
</type>
<
component_magnitudes
>1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</component_magnitudes>
<
relative_epsilons
>1e-03 1e-03 1e-03 1e-03
1e-03 1e-03 1e-03 1e-03
1e-06 1e-06 1e-06 1e-06
1e-08 1e-08 1e-08 1e-08 1e-08 1e-08 1e-08 1e-08
1e-08 1e-08 1e-08 1e-08 1e-08 1e-08 1e-08 1e-08</relative_epsilons>
</jacobian_assembler>
<constitutive_relation>
<type>
LinearElasticIsotropic
</type>
<
youngs_modulus
>E</youngs_modulus>
<
poissons_ratio
>nu</poissons_ratio>
</constitutive_relation>
<
process_variables
>
<
gas_pressure
>gas_pressure</gas_pressure>
<
capillary_pressure
>capillary_pressure</capillary_pressure>
<
temperature
>temperature</temperature>
<
displacement
>displacement</displacement>
</process_variables>
<
secondary_variables
>
<
secondary_variable
internal_name
="epsilon"
output_name
="epsilon" />
<
secondary_variable
internal_name
="gas_density"
output_name
="gas_density" />
<
secondary_variable
internal_name
="liquid_density"
output_name
="liquid_density" />
<
secondary_variable
internal_name
="mass_fraction_gas"
output_name
="xmCG" />
<
secondary_variable
internal_name
="mass_fraction_liquid"
output_name
="xmWL" />
<
secondary_variable
internal_name
="mole_fraction_gas"
output_name
="xnCG" />
<
secondary_variable
internal_name
="porosity"
output_name
="porosity" />
<
secondary_variable
internal_name
="saturation"
output_name
="saturation" />
<
secondary_variable
internal_name
="sigma"
output_name
="sigma" />
<
secondary_variable
internal_name
="swelling_stress"
output_name
="swelling_stress" />
<
secondary_variable
internal_name
="vapour_pressure"
output_name
="vapour_pressure" />
<
secondary_variable
internal_name
="velocity_gas"
output_name
="velocity_gas" />
<
secondary_variable
internal_name
="velocity_liquid"
output_name
="velocity_liquid" />
</secondary_variables>
<
reference_temperature
>T_0</reference_temperature>
<
specific_body_force
>0 0</specific_body_force>
</process>
</processes>
<
media
>
<
medium
>
<
phases
>
<
phase
>
<
type
>
AqueousLiquid
</type>
<
properties
>
<
property
>
<
name
>viscosity</name>
<
type
>
Constant
</type>
<
value
>1</value>
</property>
<
property
>
<
name
>density</name>
<
type
>
Linear
</type>
<
reference_value
>1</reference_value>
<
independent_variable
>
<
variable_name
>gas_phase_pressure</variable_name>
<
reference_condition
>0</reference_condition>
<
slope
>0.1</slope>
</independent_variable>
</property>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>4280.0</value>
</property>
<
property
>
<
name
>molar_mass</name>
<
type
>
Constant
</type>
<
value
>.018</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>0.6</value>
</property>
</properties>
</phase>
<
phase
>
<
type
>
Gas
</type>
<
properties
>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>800.0</value>
</property>
<
property
>
<
name
>molar_mass</name>
<
type
>
Constant
</type>
<
value
>.028949</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>0.6</value>
</property>
<
property
>
<
name
>density</name>
<
type
>
IdealGasLaw
</type>
</property>
<
property
>
<
name
>viscosity</name>
<
type
>
Constant
</type>
<
value
>1.8e-5</value>
</property>
</properties>
</phase>
<
phase
>
<
type
>
Solid
</type>
<
properties
>
<
property
>
<
name
>density</name>
<
type
>
Constant
</type>
<
value
>1</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>1.838</value>
</property>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>917.654</value>
</property>
<
property
>
<
name
>swelling_stress_rate</name>
<
type
>
SaturationDependentSwelling
</type>
<
swelling_pressures
>.1 .2 .3</swelling_pressures>
<
exponents
>1 1 1</exponents>
<
lower_saturation_limit
>0.3</lower_saturation_limit>
<
upper_saturation_limit
>0.8</upper_saturation_limit>
</property>
<
property
>
<
name
>thermal_expansivity</name>
<
type
>
Constant
</type>
<
value
>0</value>
</property>
</properties>
</phase>
</phases>
<
properties
>
<
property
>
<
name
>biot_coefficient</name>
<
type
>
Constant
</type>
<
value
>0.5</value>
</property>
<
property
>
<
name
>porosity</name>
<
type
>
Constant
</type>
<
value
>0.5</value>
</property>
<
property
>
<
name
>permeability</name>
<
type
>
Constant
</type>
<
value
>1</value>
</property>
<
property
>
<
name
>reference_temperature</name>
<
type
>
Constant
</type>
<
value
>293.15</value>
</property>
<
property
>
<
name
>saturation</name>
<
type
>
SaturationVanGenuchten
</type>
<
residual_liquid_saturation
>0.1</residual_liquid_saturation>
<
residual_gas_saturation
>0.05</residual_gas_saturation>
<
exponent
>0.8</exponent>
<
p_b
>0.5</p_b>
</property>
<
property
>
<
name
>relative_permeability</name>
<
type
>
Constant
</type>
<
value
>1</value>
</property>
<
property
>
<
name
>relative_permeability_nonwetting_phase</name>
<
type
>
Constant
</type>
<
value
>1</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
EffectiveThermalConductivityPorosityMixing
</type>
</property>
<
property
>
<
name
>bishops_effective_stress</name>
<
type
>
BishopsPowerLaw
</type>
<
exponent
>1</exponent>
</property>
</properties>
</medium>
</media>
<
time_loop
>
<
processes
>
<
process
ref
="process">
<
nonlinear_solver
>nonlinear_solver</nonlinear_solver>
<
convergence_criterion
>
<
type
>
PerComponentDeltaX
</type>
<
norm_type
>NORM2</norm_type>
<
abstols
>1e-15 1e-15 1e-15 1e-15 1e-15</abstols>
<
reltols
>1e-15 1e-15 1e-15 1e-15 1e-15</reltols>
</convergence_criterion>
<
time_discretization
>
<
type
>
BackwardEuler
</type>
</time_discretization>
<
time_stepping
>
<
type
>
FixedTimeStepping
</type>
<
t_initial
>0</t_initial>
<
t_end
>3</t_end>
<
timesteps
>
<
pair
>
<
repeat
>50</repeat>
<
delta_t
>.02</delta_t>
</pair>
<
pair
>
<
repeat
>4</repeat>
<
delta_t
>.25</delta_t>
</pair>
<
pair
>
<
repeat
>50</repeat>
<
delta_t
>.02</delta_t>
</pair>
</timesteps>
</time_stepping>
</process>
</processes>
<
output
>
<
type
>
VTK
</type>
<
prefix
>square</prefix>
<
timesteps
>
<
pair
>
<
repeat
>1000</repeat>
<
each_steps
>1</each_steps>
</pair>
</timesteps>
<
variables
>
<
variable
>capillary_pressure</variable>
<
variable
>displacement</variable>
<
variable
>epsilon</variable>
<
variable
>gas_density</variable>
<
variable
>gas_pressure</variable>
<
variable
>liquid_density</variable>
<
variable
>porosity</variable>
<
variable
>saturation</variable>
<
variable
>sigma</variable>
<
variable
>swelling_stress</variable>
<
variable
>temperature</variable>
<
variable
>vapour_pressure</variable>
<
variable
>velocity_gas</variable>
<
variable
>velocity_liquid</variable>
<
variable
>xmCG</variable>
<
variable
>xmWL</variable>
<
variable
>xnCG</variable>
<
variable
>liquid_pressure_interpolated</variable>
</variables>
<
suffix
>
ts
{:timestep}_t_{:time}</suffix>
</output>
</time_loop>
<
local_coordinate_system
>
<
basis_vector_0
>e0</basis_vector_0>
<
basis_vector_1
>e1</basis_vector_1>
</local_coordinate_system>
<
parameters
>
<
parameter
>
<
name
>e0</name>
<
type
>
Constant
</type>
<
values
>1 0</values>
</parameter>
<
parameter
>
<
name
>e1</name>
<
type
>
Constant
</type>
<
values
>0 1</values>
</parameter>
<
parameter
>
<
name
>E</name>
<
type
>
Constant
</type>
<
value
>1</value>
</parameter>
<
parameter
>
<
name
>nu</name>
<
type
>
Constant
</type>
<
value
>.3</value>
</parameter>
<
parameter
>
<
name
>T_0</name>
<
type
>
Constant
</type>
<
value
>273.15</value>
</parameter>
<
parameter
>
<
name
>displacement0</name>
<
type
>
Constant
</type>
<
values
>0 0</values>
</parameter>
<
parameter
>
<
name
>gas_pressure</name>
<
type
>
Constant
</type>
<
value
>1e-16</value>
</parameter>
<
parameter
>
<
name
>dirichlet0</name>
<
type
>
Constant
</type>
<
values
>0</values>
</parameter>
<
parameter
>
<
name
>p0</name>
<
type
>
Constant
</type>
<
value
>-0.1</value>
</parameter>
<
parameter
>
<
name
>pressure_bc</name>
<
type
>
CurveScaled
</type>
<
curve
>pressure_ramp</curve>
<
parameter
>p0</parameter>
</parameter>
</parameters>
<
curves
>
<
curve
>
<
name
>pressure_ramp</name>
<coords>0 1 2 3</coords>
<values>1 -10 -10 1</values>
</curve>
</curves>
<
process_variables
>
<
process_variable
>
<
name
>displacement</name>
<
components
>2</components>
<
order
>2</order>
<
compensate_non_equilibrium_initial_residuum
>true</compensate_non_equilibrium_initial_residuum>
<
initial_condition
>displacement0</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
geometrical_set
>square_1x1_geometry</geometrical_set>
<
geometry
>left</geometry>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>dirichlet0</parameter>
</boundary_condition>
<
boundary_condition
>
<
geometrical_set
>square_1x1_geometry</geometrical_set>
<
geometry
>bottom</geometry>
<
type
>
Dirichlet
</type>
<
component
>1</component>
<
parameter
>dirichlet0</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<
process_variable
>
<
name
>capillary_pressure</name>
<
components
>1</components>
<
compensate_non_equilibrium_initial_residuum
>true</compensate_non_equilibrium_initial_residuum>
<
order
>1</order>
<
initial_condition
>p0</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
geometrical_set
>square_1x1_geometry</geometrical_set>
<
geometry
>right</geometry>
<
type
>
Dirichlet
</type>
<
parameter
>pressure_bc</parameter>
</boundary_condition>
<
boundary_condition
>
<
geometrical_set
>square_1x1_geometry</geometrical_set>
<
geometry
>bottom</geometry>
<
type
>
Dirichlet
</type>
<
parameter
>pressure_bc</parameter>
</boundary_condition>
<
boundary_condition
>
<
geometrical_set
>square_1x1_geometry</geometrical_set>
<
geometry
>left</geometry>
<
type
>
Dirichlet
</type>
<
parameter
>pressure_bc</parameter>
</boundary_condition>
<
boundary_condition
>
<
geometrical_set
>square_1x1_geometry</geometrical_set>
<
geometry
>top</geometry>
<
type
>
Dirichlet
</type>
<
parameter
>pressure_bc</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<
process_variable
>
<
name
>gas_pressure</name>
<
components
>1</components>
<
order
>1</order>
<
initial_condition
>gas_pressure</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
geometrical_set
>square_1x1_geometry</geometrical_set>
<
geometry
>top</geometry>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>gas_pressure</parameter>
</boundary_condition>
<
boundary_condition
>
<
geometrical_set
>square_1x1_geometry</geometrical_set>
<
geometry
>bottom</geometry>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>gas_pressure</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<
process_variable
>
<
name
>temperature</name>
<
components
>1</components>
<
order
>1</order>
<
initial_condition
>T_0</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>square_1x1_quad8_1e0</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>T_0</parameter>
</boundary_condition>
</boundary_conditions>
<
source_terms
/>
</process_variable>
</process_variables>
<
nonlinear_solvers
>
<
nonlinear_solver
>
<
name
>nonlinear_solver</name>
<
type
>
Newton
</type>
<
max_iter
>100</max_iter>
<
linear_solver
>general_linear_solver</linear_solver>
</nonlinear_solver>
</nonlinear_solvers>
<
linear_solvers
>
<
linear_solver
>
<
name
>general_linear_solver</name>
<
eigen
>
<
solver_type
>SparseLU</solver_type>
<
scaling
>true</scaling>
</eigen>
</linear_solver>
</linear_solvers>
<
test_definition
>
<
vtkdiff
>
<
regex
>square_ts_.*.vtu</regex>
<
field
>liquid_pressure_interpolated</field>
<
absolute_tolerance
>1e-13</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>square_ts_.*.vtu</regex>
<
field
>saturation</field>
<
absolute_tolerance
>1.9e-14</absolute_tolerance>
<
relative_tolerance
>4e-15</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>square_ts_.*.vtu</regex>
<
field
>displacement</field>
<
absolute_tolerance
>1e-15</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>square_ts_.*.vtu</regex>
<
field
>sigma</field>
<
absolute_tolerance
>3e-15</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>square_ts_.*.vtu</regex>
<
field
>swelling_stress</field>
<
absolute_tolerance
>2e-15</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>square_ts_.*.vtu</regex>
<
field
>epsilon</field>
<
absolute_tolerance
>2e-15</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>square_ts_.*.vtu</regex>
<
field
>velocity_liquid</field>
<
absolute_tolerance
>1e-15</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>square_ts_.*.vtu</regex>
<
field
>porosity</field>
<
absolute_tolerance
>1e-14</absolute_tolerance>
<
relative_tolerance
>1e-15</relative_tolerance>
</vtkdiff>
</test_definition>
</OpenGeoSysProject>
OGS CTests—Project Files
TH2M
H2M
OrthotropicSwelling
Generated by
1.14.0