OGS
axisymmetric_sphere_pl.prj
<
OpenGeoSysProject
>
<
mesh
axially_symmetric
="true">axisymmetric_sphere_pl.vtu</mesh>
<
geometry
>axisymmetric_sphere_pl.gml</geometry>
<
search_length_algorithm
>
<
type
>
fixed
</type>
<
value
>1e-3</value>
</search_length_algorithm>
<
processes
>
<
process
>
<
name
>SD</name>
<
type
>
SMALL_DEFORMATION
</type>
<
integration_order
>2</integration_order>
<constitutive_relation>
<type>
Ehlers
</type>
<
shear_modulus
>G</shear_modulus>
<
bulk_modulus
>K</bulk_modulus>
<
kappa
>kappa</kappa>
<
beta
>beta</beta>
<
gamma
>gamma</gamma>
<
hardening_modulus
>hard</hardening_modulus>
<
alpha
>alpha</alpha>
<
delta
>delta</delta>
<
eps
>epsilon</eps>
<
m
>m</m>
<
alphap
>alphap</alphap>
<
deltap
>deltap</deltap>
<
epsp
>epsilonp</epsp>
<
mp
>mp</mp>
<
betap
>betap</betap>
<
gammap
>gammap</gammap>
<
tangent_type
>Plastic</tangent_type>
<
nonlinear_solver
>
<maximum_iterations>1000</maximum_iterations>
<residuum_tolerance>1e-8</residuum_tolerance>
<increment_tolerance>0</increment_tolerance>
</nonlinear_solver>
</constitutive_relation>
<
specific_body_force
>0 0</specific_body_force>
<
process_variables
>
<
process_variable
>displacement</process_variable>
</process_variables>
<
secondary_variables
>
<
secondary_variable
name="sigma" />
</secondary_variables>
</process>
</processes>
<
time_loop
>
<
processes
>
<
process
ref
="SD">
<
nonlinear_solver
>basic_newton</nonlinear_solver>
<
convergence_criterion
>
<
type
>
DeltaX
</type>
<
norm_type
>NORM2</norm_type>
<
abstol
>1e-16</abstol>
</convergence_criterion>
<
time_discretization
>
<
type
>
BackwardEuler
</type>
</time_discretization>
<
time_stepping
>
<
type
>
FixedTimeStepping
</type>
<
t_initial
>0</t_initial>
<
t_end
>1</t_end>
<
timesteps
>
<
pair
>
<
repeat
>10000</repeat>
<
delta_t
>0.01</delta_t>
</pair>
</timesteps>
</time_stepping>
</process>
</processes>
<
output
>
<
type
>
VTK
</type>
<
prefix
>axisymmetric_sphere_pl</prefix>
<
timesteps
>
<
pair
>
<
repeat
>1000000</repeat>
<
each_steps
>1</each_steps>
</pair>
</timesteps>
<
variables
>
<
variable
>displacement</variable>
<
variable
>sigma</variable>
</variables>
<
suffix
>
ts
{:timestep}_t_{:time}</suffix>
</output>
</time_loop>
<
media
>
<
medium
>
<
phases
>
<
phase
>
<
type
>
Solid
</type>
<
properties
>
<
property
>
<
name
>density</name>
<
type
>
Constant
</type>
<
value
>1</value>
</property>
</properties>
</phase>
</phases>
</medium>
</media>
<
parameters
>
<
parameter
>
<
name
>G</name>
<
type
>
Constant
</type>
<
value
>46.3e9</value>
</parameter>
<
parameter
>
<
name
>K</name>
<
type
>
Constant
</type>
<
value
>138.9e9</value>
</parameter>
<
parameter
>
<
name
>kappa</name>
<
type
>
Constant
</type>
<
value
>115470053.838</value>
</parameter>
<
parameter
>
<
name
>beta</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>gamma</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>hard</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>alpha</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>delta</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>epsilon</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>m</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>alphap</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>deltap</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>epsilonp</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>mp</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>betap</name>
<
type
>
Constant
</type>
<
value
>0.0</value>
</parameter>
<
parameter
>
<
name
>gammap</name>
<
type
>
Constant
</type>
<
value
>0.</value>
</parameter>
<
parameter
>
<
name
>displacement0</name>
<
type
>
Constant
</type>
<
values
>0 0</values>
</parameter>
<
parameter
>
<
name
>dirichlet0</name>
<
type
>
Constant
</type>
<
value
>0</value>
</parameter>
<
parameter
>
<
name
>pressure_inside_spatial</name>
<
type
>
Constant
</type>
<
value
>239269376.577</value>
</parameter>
<
parameter
>
<
name
>pressure_inside</name>
<
type
>
CurveScaled
</type>
<
curve
>load_inner_temporal</curve>
<
parameter
>pressure_inside_spatial</parameter>
</parameter>
</parameters>
<
curves
>
<
curve
>
<
name
>load_inner_temporal</name>
<coords>0.0 1</coords>
<values>0.0 1</values>
</curve>
</curves>
<
process_variables
>
<
process_variable
>
<
name
>displacement</name>
<
components
>2</components>
<
order
>1</order>
<
initial_condition
>displacement0</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
geometrical_set
>geometry</geometrical_set>
<
geometry
>inner</geometry>
<
type
>
NormalTraction
</type>
<
parameter
>pressure_inside</parameter>
</boundary_condition>
<
boundary_condition
>
<
geometrical_set
>geometry</geometrical_set>
<
geometry
>axis</geometry>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>dirichlet0</parameter>
</boundary_condition>
<
boundary_condition
>
<
geometrical_set
>geometry</geometrical_set>
<
geometry
>central_outer</geometry>
<
type
>
Dirichlet
</type>
<
component
>1</component>
<
parameter
>dirichlet0</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
</process_variables>
<
nonlinear_solvers
>
<
nonlinear_solver
>
<
name
>basic_newton</name>
<
type
>
Newton
</type>
<
max_iter
>50</max_iter>
<
linear_solver
>general_linear_solver</linear_solver>
</nonlinear_solver>
</nonlinear_solvers>
<
linear_solvers
>
<
linear_solver
>
<
name
>general_linear_solver</name>
<
lis
>-i CG -p jacobi -tol 1e-16 -maxiter 10000</lis>
<
eigen
>
<
solver_type
>BiCGSTAB</solver_type>
<
precon_type
>ILUT</precon_type>
<
max_iteration_step
>10000</max_iteration_step>
<
error_tolerance
>1e-16</error_tolerance>
</eigen>
<
petsc
>
<
prefix
>sd</prefix>
<
parameters
>-sd_ksp_type cg -sd_pc_type bjacobi -sd_ksp_rtol 1e-16 -sd_ksp_max_it 10000</parameters>
</petsc>
</linear_solver>
</linear_solvers>
<
test_definition
>
<
vtkdiff
>
<
file
>axisymmetric_sphere_pl_ts_100_t_1.000000.vtu</file>
<
field
>displacement</field>
<
absolute_tolerance
>1e-15</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
file
>axisymmetric_sphere_pl_ts_100_t_1.000000.vtu</file>
<
field
>sigma</field>
<
absolute_tolerance
>2e-5</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
</test_definition>
</OpenGeoSysProject>
OGS CTests—Project Files
Mechanics
Ehlers
Generated by
1.14.0