A System of nonlinear equations to be solved with the Newton-Raphson method.
The Newton-Raphson method will iterate the linearized equation \mathtt{Jac} \cdot (-\Delta x_i) = \mathtt{res} .
Definition at line 35 of file NonlinearSystem.h.
#include <NonlinearSystem.h>
Public Member Functions | |
virtual void | assemble (std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id)=0 |
virtual std::vector< GlobalIndexType > | getIndicesOfResiduumWithoutInitialCompensation () const =0 |
virtual void | getResidual (GlobalVector const &x, GlobalVector const &x_prev, GlobalVector &res) const =0 |
virtual void | getJacobian (GlobalMatrix &Jac) const =0 |
virtual void | computeKnownSolutions (GlobalVector const &x, int const process_id)=0 |
Pre-compute known solutions and possibly store them internally. | |
virtual void | applyKnownSolutions (GlobalVector &x) const =0 |
virtual void | applyKnownSolutionsNewton (GlobalMatrix &Jac, GlobalVector &res, GlobalVector const &x, GlobalVector &minus_delta_x) const =0 |
virtual void | applyKnownSolutionsPETScSNES (GlobalMatrix &Jac, GlobalVector &res, GlobalVector &x) const =0 |
virtual void | updateConstraints (GlobalVector &, GlobalVector &, int)=0 |
![]() | |
virtual bool | isLinear () const =0 |
virtual bool | requiresNormalization () const =0 |
virtual void | preIteration (const unsigned iter, GlobalVector const &x) |
virtual IterationResult | postIteration (GlobalVector const &x) |
virtual MathLib::MatrixSpecifications | getMatrixSpecifications (const int process_id) const =0 |
virtual | ~EquationSystem ()=default |
|
pure virtual |
Apply known solutions to the solution vector x
.
|
pure virtual |
Apply known solutions to the linearized equation system \mathit{Jac} \cdot (-\Delta x) = \mathit{res} .
|
pure virtual |
Apply known solutions to the linearized equation system \mathit{Jac} \cdot (-\Delta x) = \mathit{res} .
|
pure virtual |
Assembles the linearized equation system at the point x
. The linearized system is A(x) \cdot x = b(x). Here the matrix A(x) and the vector b(x) are assembled.
|
pure virtual |
Pre-compute known solutions and possibly store them internally.
|
pure virtual |
|
pure virtual |
Writes the Jacobian of the residual to Jac
.
|
pure virtual |
Writes the residual at point x
to res
.
x
.x
.
|
pure virtual |