OGS
GeoLib::MinimalBoundingSphere Class Referencefinal

Detailed Description

Calculated center and radius of a minimal bounding sphere for a given number of geometric points.

Definition at line 28 of file MinimalBoundingSphere.h.

#include <MinimalBoundingSphere.h>

Collaboration diagram for GeoLib::MinimalBoundingSphere:
[legend]

Public Member Functions

 MinimalBoundingSphere (MathLib::Point3d const &p, double radius=std::numeric_limits< double >::epsilon())
 Point-Sphere.
 
 MinimalBoundingSphere (MathLib::Point3d const &p, MathLib::Point3d const &q)
 Bounding sphere using two points.
 
 MinimalBoundingSphere (MathLib::Point3d const &p, MathLib::Point3d const &q, MathLib::Point3d const &r)
 Bounding sphere using three points.
 
 MinimalBoundingSphere (MathLib::Point3d const &p, MathLib::Point3d const &q, MathLib::Point3d const &r, MathLib::Point3d const &s)
 Bounding sphere using four points.
 
 MinimalBoundingSphere (std::vector< MathLib::Point3d * > const &points)
 Bounding sphere of n points.
 
MathLib::Point3d getCenter () const
 Returns the center point of the sphere.
 
double getRadius () const
 Returns the radius of the sphere.
 
double pointDistanceSquared (MathLib::Point3d const &pnt) const
 

Private Member Functions

 MinimalBoundingSphere ()
 Constructor using no points.
 

Static Private Member Functions

static MinimalBoundingSphere recurseCalculation (std::vector< MathLib::Point3d * > sphere_points, std::size_t start_idx, std::size_t length, std::size_t n_boundary_points)
 

Private Attributes

double _radius {-1}
 
MathLib::Point3d _center
 

Constructor & Destructor Documentation

◆ MinimalBoundingSphere() [1/6]

GeoLib::MinimalBoundingSphere::MinimalBoundingSphere ( MathLib::Point3d const & p,
double radius = std::numeric_limits<double>::epsilon() )
explicit

Point-Sphere.

Definition at line 28 of file MinimalBoundingSphere.cpp.

◆ MinimalBoundingSphere() [2/6]

GeoLib::MinimalBoundingSphere::MinimalBoundingSphere ( MathLib::Point3d const & p,
MathLib::Point3d const & q )

Bounding sphere using two points.

Definition at line 34 of file MinimalBoundingSphere.cpp.

36 : _radius(std::numeric_limits<double>::epsilon()), _center(p)
37{
38 Eigen::Vector3d const a = q.asEigenVector3d() - p.asEigenVector3d();
39
40 Eigen::Vector3d o = a / 2;
41 _radius = o.norm() + std::numeric_limits<double>::epsilon();
42 o += p.asEigenVector3d();
43 _center = MathLib::Point3d{{o[0], o[1], o[2]}};
44}
Eigen::Vector3d const & asEigenVector3d() const
Definition Point3d.h:64

References _center, _radius, and MathLib::Point3d::asEigenVector3d().

◆ MinimalBoundingSphere() [3/6]

GeoLib::MinimalBoundingSphere::MinimalBoundingSphere ( MathLib::Point3d const & p,
MathLib::Point3d const & q,
MathLib::Point3d const & r )

Bounding sphere using three points.

Definition at line 46 of file MinimalBoundingSphere.cpp.

49{
50 auto const& vp = p.asEigenVector3d();
51 Eigen::Vector3d const a = r.asEigenVector3d() - vp;
52 Eigen::Vector3d const b = q.asEigenVector3d() - vp;
53 Eigen::Vector3d const axb = a.cross(b);
54
55 if (axb.squaredNorm() > 0)
56 {
57 double const denom = 2.0 * axb.dot(axb);
58 Eigen::Vector3d o =
59 (b.dot(b) * axb.cross(a) + a.dot(a) * b.cross(axb)) / denom;
60 _radius = o.norm() + std::numeric_limits<double>::epsilon();
61 o += vp;
62 _center = MathLib::Point3d{{o[0], o[1], o[2]}};
63 }
64 else
65 {
66 MinimalBoundingSphere two_pnts_sphere;
67 if (a.squaredNorm() > b.squaredNorm())
68 {
69 two_pnts_sphere = MinimalBoundingSphere(p, r);
70 }
71 else
72 {
73 two_pnts_sphere = MinimalBoundingSphere(p, q);
74 }
75 _radius = two_pnts_sphere.getRadius();
76 _center = two_pnts_sphere.getCenter();
77 }
78}
MinimalBoundingSphere()
Constructor using no points.

References MathLib::Point3d::asEigenVector3d(), getCenter(), and getRadius().

◆ MinimalBoundingSphere() [4/6]

GeoLib::MinimalBoundingSphere::MinimalBoundingSphere ( MathLib::Point3d const & p,
MathLib::Point3d const & q,
MathLib::Point3d const & r,
MathLib::Point3d const & s )

Bounding sphere using four points.

Definition at line 80 of file MinimalBoundingSphere.cpp.

84{
85 Eigen::Vector3d const va = q.asEigenVector3d() - p.asEigenVector3d();
86 Eigen::Vector3d const vb = r.asEigenVector3d() - p.asEigenVector3d();
87 Eigen::Vector3d const vc = s.asEigenVector3d() - p.asEigenVector3d();
88
89 if (!MathLib::isCoplanar(p, q, r, s))
90 {
91 double const denom = 2.0 * va.cross(vb).dot(vc);
92 Eigen::Vector3d o =
93 (vc.dot(vc) * va.cross(vb) + vb.dot(vb) * vc.cross(va) +
94 va.dot(va) * vb.cross(vc)) /
95 denom;
96
97 _radius = o.norm() + std::numeric_limits<double>::epsilon();
98 o += p.asEigenVector3d();
99 _center = MathLib::Point3d({o[0], o[1], o[2]});
100 }
101 else
102 {
103 MinimalBoundingSphere const pqr(p, q, r);
104 MinimalBoundingSphere const pqs(p, q, s);
105 MinimalBoundingSphere const prs(p, r, s);
106 MinimalBoundingSphere const qrs(q, r, s);
107 _radius = pqr.getRadius();
108 _center = pqr.getCenter();
109 if (_radius < pqs.getRadius())
110 {
111 _radius = pqs.getRadius();
112 _center = pqs.getCenter();
113 }
114 if (_radius < prs.getRadius())
115 {
116 _radius = prs.getRadius();
117 _center = prs.getCenter();
118 }
119 if (_radius < qrs.getRadius())
120 {
121 _radius = qrs.getRadius();
122 _center = qrs.getCenter();
123 }
124 }
125}
bool isCoplanar(const MathLib::Point3d &a, const MathLib::Point3d &b, const MathLib::Point3d &c, const MathLib::Point3d &d)
Checks if the four given points are located on a plane.

References MathLib::Point3d::asEigenVector3d(), getCenter(), getRadius(), and MathLib::isCoplanar().

◆ MinimalBoundingSphere() [5/6]

GeoLib::MinimalBoundingSphere::MinimalBoundingSphere ( std::vector< MathLib::Point3d * > const & points)
explicit

Bounding sphere of n points.

Definition at line 127 of file MinimalBoundingSphere.cpp.

129 : _radius(-1), _center({0, 0, 0})
130{
131 const std::vector<MathLib::Point3d*>& sphere_points(points);
132 MinimalBoundingSphere const bounding_sphere =
133 recurseCalculation(sphere_points, 0, sphere_points.size(), 0);
134 _center = bounding_sphere.getCenter();
135 _radius = bounding_sphere.getRadius();
136}
static MinimalBoundingSphere recurseCalculation(std::vector< MathLib::Point3d * > sphere_points, std::size_t start_idx, std::size_t length, std::size_t n_boundary_points)

◆ MinimalBoundingSphere() [6/6]

GeoLib::MinimalBoundingSphere::MinimalBoundingSphere ( )
privatedefault

Constructor using no points.

Referenced by recurseCalculation().

Member Function Documentation

◆ getCenter()

MathLib::Point3d GeoLib::MinimalBoundingSphere::getCenter ( ) const
inline

Returns the center point of the sphere.

Definition at line 50 of file MinimalBoundingSphere.h.

50{ return _center; }

References _center.

Referenced by MinimalBoundingSphere(), and MinimalBoundingSphere().

◆ getRadius()

double GeoLib::MinimalBoundingSphere::getRadius ( ) const
inline

Returns the radius of the sphere.

Definition at line 53 of file MinimalBoundingSphere.h.

53{ return _radius; }

References _radius.

Referenced by MinimalBoundingSphere(), MinimalBoundingSphere(), and MeshToolsLib::RadiusEdgeRatioMetric::calculateQuality().

◆ pointDistanceSquared()

double GeoLib::MinimalBoundingSphere::pointDistanceSquared ( MathLib::Point3d const & pnt) const

Returns the squared euclidean distance of a point from the sphere (for points within the sphere distance is negative)

Definition at line 194 of file MinimalBoundingSphere.cpp.

196{
197 return MathLib::sqrDist(_center, pnt) - (_radius * _radius);
198}
double sqrDist(MathLib::Point3d const &p0, MathLib::Point3d const &p1)
Definition Point3d.cpp:26

References _center, _radius, and MathLib::sqrDist().

Referenced by recurseCalculation().

◆ recurseCalculation()

MinimalBoundingSphere GeoLib::MinimalBoundingSphere::recurseCalculation ( std::vector< MathLib::Point3d * > sphere_points,
std::size_t start_idx,
std::size_t length,
std::size_t n_boundary_points )
staticprivate

Recursive method for calculating a minimal bounding sphere for an arbitrary number of points. Note: This method will change the order of elements in the vector sphere_points.

Parameters
sphere_pointsThe vector of points for which the smallest enclosing sphere is calculated
start_idxStart index of the vector subrange analysed in the current recursive step
lengthLength of the vector subrange analysed in the current recursive step
n_boundary_pointsNumber of found boundary points in the current recursive step

Algorithm based the following two papers: Emo Welzl: Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in Computer Science, pp. 359–370, 1991 Bernd Gaertner: Fast and Robust Smallest Enclosing Balls. ESA99, pp. 325–338, 1999. Code based on "Smallest Enclosing Spheres" implementation by Nicolas Capens on flipcode's Developer Toolbox (www.flipcode.com)

Definition at line 138 of file MinimalBoundingSphere.cpp.

143{
145 switch (n_boundary_points)
146 {
147 case 0:
148 sphere = MinimalBoundingSphere();
149 break;
150 case 1:
151 sphere = MinimalBoundingSphere(*sphere_points[start_idx - 1]);
152 break;
153 case 2:
154 sphere = MinimalBoundingSphere(*sphere_points[start_idx - 1],
155 *sphere_points[start_idx - 2]);
156 break;
157 case 3:
158 sphere = MinimalBoundingSphere(*sphere_points[start_idx - 1],
159 *sphere_points[start_idx - 2],
160 *sphere_points[start_idx - 3]);
161 break;
162 case 4:
163 sphere = MinimalBoundingSphere(
164 *sphere_points[start_idx - 1], *sphere_points[start_idx - 2],
165 *sphere_points[start_idx - 3], *sphere_points[start_idx - 4]);
166 return sphere;
167 }
168
169 for (std::size_t i = 0; i < length; ++i)
170 {
171 // current point is located outside of sphere
172 if (sphere.pointDistanceSquared(*sphere_points[start_idx + i]) > 0)
173 {
174 if (i > start_idx)
175 {
176 using DiffType =
177 std::vector<MathLib::Point3d*>::iterator::difference_type;
178 std::vector<MathLib::Point3d*> const tmp_ps(
179 sphere_points.cbegin() + static_cast<DiffType>(start_idx),
180 sphere_points.cbegin() +
181 static_cast<DiffType>(start_idx + i + 1));
182 std::copy(tmp_ps.cbegin(), --tmp_ps.cend(),
183 sphere_points.begin() +
184 static_cast<DiffType>(start_idx + 1));
185 sphere_points[start_idx] = tmp_ps.back();
186 }
187 sphere = recurseCalculation(sphere_points, start_idx + 1, i,
188 n_boundary_points + 1);
189 }
190 }
191 return sphere;
192}

References MinimalBoundingSphere(), pointDistanceSquared(), and recurseCalculation().

Referenced by recurseCalculation().

Member Data Documentation

◆ _center

MathLib::Point3d GeoLib::MinimalBoundingSphere::_center
private
Initial value:
{{std::numeric_limits<double>::max(),
std::numeric_limits<double>::max(),
std::numeric_limits<double>::max()}}

Definition at line 87 of file MinimalBoundingSphere.h.

87 {{std::numeric_limits<double>::max(),
88 std::numeric_limits<double>::max(),
89 std::numeric_limits<double>::max()}};

Referenced by MinimalBoundingSphere(), getCenter(), and pointDistanceSquared().

◆ _radius

double GeoLib::MinimalBoundingSphere::_radius {-1}
private

Definition at line 86 of file MinimalBoundingSphere.h.

86{-1};

Referenced by MinimalBoundingSphere(), getRadius(), and pointDistanceSquared().


The documentation for this class was generated from the following files: