Loading [MathJax]/extensions/MathZoom.js
OGS
NodeWiseMeshPartitioner.cpp
Go to the documentation of this file.
1
16
17#include <limits>
18#include <numeric>
19#include <range/v3/algorithm/transform.hpp>
20#include <range/v3/range/conversion.hpp>
21#include <unordered_map>
22
23#include "BaseLib/Error.h"
24#include "BaseLib/FileTools.h"
25#include "BaseLib/Logging.h"
26#include "BaseLib/RunTime.h"
28#include "MeshLib/IO/NodeData.h"
30#include "MeshLib/MeshEnums.h"
33
34namespace ApplicationUtils
35{
37 MeshLib::MeshItemType const item_type) const
38{
39 switch (item_type)
40 {
42 return nodes.size();
44 return regular_elements.size() + ghost_elements.size();
47 default:
48 OGS_FATAL("Unsupported MeshItemType {:s}.",
49 MeshLib::toString(item_type));
50 }
51}
52
54 std::ostream& os, std::vector<std::size_t> const& global_node_ids) const
55{
56 std::vector<MeshLib::IO::NodeData> nodes_buffer;
57 nodes_buffer.reserve(nodes.size());
58
59 for (const auto* node : nodes)
60 {
61 double const* coords = node->data();
62 nodes_buffer.emplace_back(global_node_ids[node->getID()], coords[0],
63 coords[1], coords[2]);
64 }
65 return os.write(reinterpret_cast<const char*>(nodes_buffer.data()),
66 sizeof(MeshLib::IO::NodeData) * nodes_buffer.size());
67}
68
74 std::vector<const MeshLib::Element*> const& elements)
75{
76 return 3 * elements.size() +
77 std::accumulate(begin(elements), end(elements), 0,
78 [](auto const nnodes, auto const* e)
79 { return nnodes + e->getNumberOfNodes(); });
80}
81
82std::ostream& Partition::writeConfig(std::ostream& os) const
83{
84 long const data[] = {
85 static_cast<long>(nodes.size()),
86 static_cast<long>(number_of_base_nodes),
87 static_cast<long>(regular_elements.size()),
88 static_cast<long>(ghost_elements.size()),
89 static_cast<long>(number_of_regular_base_nodes),
90 static_cast<long>(number_of_regular_nodes),
91 static_cast<long>(number_of_mesh_base_nodes),
92 static_cast<long>(number_of_mesh_all_nodes),
93 static_cast<long>(
95 static_cast<long>(
97 };
98
99 return os.write(reinterpret_cast<const char*>(data), sizeof(data));
100}
101
102std::size_t partitionLookup(std::size_t const& node_id,
103 std::vector<std::size_t> const& partition_ids,
104 std::vector<std::size_t> const& node_id_mapping)
105{
106 return partition_ids[node_id_mapping[node_id]];
107}
108
109std::pair<std::vector<MeshLib::Node const*>, std::vector<MeshLib::Node const*>>
110splitIntoBaseAndHigherOrderNodes(std::vector<MeshLib::Node const*> const& nodes,
111 MeshLib::Mesh const& mesh)
112{
113 // Space for resulting vectors.
114 std::vector<MeshLib::Node const*> base_nodes;
115 // if linear mesh, then one reallocation, no realloc for higher order
116 // elements meshes.
117 base_nodes.reserve(nodes.size() / 2);
118 std::vector<MeshLib::Node const*> higher_order_nodes;
119 // if linear mesh, then wasted space, good estimate for quadratic
120 // order mesh, and realloc needed for higher order element meshes.
121 higher_order_nodes.reserve(nodes.size() / 2);
122
123 // Split the nodes into base nodes and extra nodes.
124 std::partition_copy(
125 begin(nodes), end(nodes), std::back_inserter(base_nodes),
126 std::back_inserter(higher_order_nodes),
127 [&](MeshLib::Node const* const n)
128 { return isBaseNode(*n, mesh.getElementsConnectedToNode(*n)); });
129
130 return {base_nodes, higher_order_nodes};
131}
132
136std::tuple<std::vector<MeshLib::Node*>, std::vector<MeshLib::Node*>>
138 std::size_t const part_id,
139 std::vector<MeshLib::Node*> const& nodes,
140 std::vector<MeshLib::Element const*> const& ghost_elements,
141 std::vector<std::size_t> const& partition_ids,
142 MeshLib::Mesh const& mesh,
143 std::vector<std::size_t> const& node_id_mapping)
144{
145 std::vector<MeshLib::Node*> base_ghost_nodes;
146 std::vector<MeshLib::Node*> higher_order_ghost_nodes;
147
148 std::vector<bool> is_ghost_node(nodes.size(), false);
149 for (const auto* ghost_elem : ghost_elements)
150 {
151 for (unsigned i = 0; i < ghost_elem->getNumberOfNodes(); i++)
152 {
153 auto const& n = ghost_elem->getNode(i);
154 auto const node_id = n->getID();
155 if (is_ghost_node[node_id])
156 {
157 continue;
158 }
159
160 if (partitionLookup(node_id, partition_ids, node_id_mapping) !=
161 part_id)
162 {
163 if (isBaseNode(*n, mesh.getElementsConnectedToNode(*n)))
164 {
165 base_ghost_nodes.push_back(nodes[node_id]);
166 }
167 else
168 {
169 higher_order_ghost_nodes.push_back(nodes[node_id]);
170 }
171 is_ghost_node[node_id] = true;
172 }
173 }
174 }
175 return std::tuple<std::vector<MeshLib::Node*>, std::vector<MeshLib::Node*>>{
176 base_ghost_nodes, higher_order_ghost_nodes};
177}
178
181template <typename T>
183 Partition const& p,
184 std::size_t const offset,
186 MeshLib::PropertyVector<T>& partitioned_pv)
187{
188 auto const& nodes = p.nodes;
189 auto const nnodes = nodes.size();
190 auto const n_components = pv.getNumberOfGlobalComponents();
191 for (std::size_t i = 0; i < nnodes; ++i)
192 {
193 const auto global_id = nodes[i]->getID();
194 std::copy_n(&pv[n_components * global_id], n_components,
195 &partitioned_pv[offset + n_components * i]);
196 }
197 return n_components * nnodes;
198}
199
203template <typename T>
205 Partition const& p,
206 std::size_t const offset,
208 MeshLib::PropertyVector<T>& partitioned_pv)
209{
210 std::size_t const n_regular(p.regular_elements.size());
211 auto const n_components = pv.getNumberOfGlobalComponents();
212 for (std::size_t i = 0; i < n_regular; ++i)
213 {
214 const auto id = p.regular_elements[i]->getID();
215 std::copy_n(&pv[n_components * id], n_components,
216 &partitioned_pv[offset + n_components * i]);
217 }
218
219 std::size_t const n_ghost(p.ghost_elements.size());
220 for (std::size_t i = 0; i < n_ghost; ++i)
221 {
222 const auto id = p.ghost_elements[i]->getID();
223 std::copy_n(&pv[n_components * id], n_components,
224 &partitioned_pv[offset + n_components * (n_regular + i)]);
225 }
226 return n_components * (n_regular + n_ghost);
227}
228
233template <typename T>
235 MeshLib::Properties const& properties,
236 Partition const& p,
237 std::size_t const id_offset_partition,
238 std::vector<std::size_t> const& element_ip_data_offsets,
240 MeshLib::PropertyVector<T>& partitioned_pv)
241{
242 // Special field data such as OGS_VERSION, IntegrationPointMetaData,
243 // etc., which are not "real" integration points, are copied "as is"
244 // (i.e. fully) for every partition.
245 if (pv.getPropertyName().find("_ip") == std::string::npos)
246 {
247 std::copy_n(&pv[0], pv.size(), &partitioned_pv[id_offset_partition]);
248 return pv.size();
249 }
250
251 auto const n_components = pv.getNumberOfGlobalComponents();
252
253 std::size_t id_offset = 0;
254
255 auto copyFieldData =
256 [&](std::vector<const MeshLib::Element*> const& elements)
257 {
258 auto const ip_meta_data = MeshLib::getIntegrationPointMetaData(
259 properties, pv.getPropertyName());
260
261 for (auto const element : elements)
262 {
263 int const number_of_element_field_data =
265 *element) *
266 n_components;
267 // The original element ID is not changed.
268 auto const element_id = element->getID();
269 int const begin_pos = element_ip_data_offsets[element_id];
270 int const end_pos = element_ip_data_offsets[element_id + 1];
271
272 std::copy(pv.begin() + begin_pos, pv.begin() + end_pos,
273 &partitioned_pv[id_offset + id_offset_partition]);
274 id_offset += number_of_element_field_data;
275 }
276 };
277
278 copyFieldData(p.regular_elements);
279 copyFieldData(p.ghost_elements);
280
281 return id_offset;
282}
283
285 std::vector<Partition>& partitions)
286{
287 for (auto const& [name, property] : properties)
288 {
289 auto const item_type = property->getMeshItemType();
290
292 {
293 continue;
294 }
295
296 // For special field data such as OGS_VERSION, IntegrationPointMetaData,
297 // etc., which are not "real" integration points:
298 if (property->getPropertyName().find("_ip") == std::string::npos)
299 {
300 continue;
301 }
302
303 std::string const property_name = property->getPropertyName();
304 auto countIntegrationPoints =
305 [&](std::vector<const MeshLib::Element*> const& elements)
306 {
307 auto const ip_meta_data =
308 MeshLib::getIntegrationPointMetaData(properties, property_name);
309 std::size_t counter = 0;
310 for (auto const element : elements)
311 {
312 int const number_of_integration_points =
314 ip_meta_data, *element);
315 counter += number_of_integration_points;
316 }
317 return counter;
318 };
319
320 for (auto& p : partitions)
321 {
322 p.number_of_integration_points =
323 countIntegrationPoints(p.regular_elements) +
324 countIntegrationPoints(p.ghost_elements);
325 }
326 return;
327 }
328}
329
330template <typename T>
332 std::vector<MeshLib::Element*> const& global_mesh_elements,
333 MeshLib::Properties& partitioned_properties,
334 MeshLib::Properties const& properties,
335 std::vector<Partition> const& partitions,
336 MeshLib::PropertyVector<T> const* const pv,
337 std::map<MeshLib::MeshItemType, std::size_t> const& total_number_of_tuples)
338{
339 if (pv == nullptr)
340 {
341 return false;
342 }
343 auto const item_type = pv->getMeshItemType();
344
345 std::size_t partitioned_pv_size = total_number_of_tuples.at(item_type) *
347
348 std::vector<std::size_t> element_ip_data_offsets;
350 {
351 // Special field data such as OGS_VERSION, IntegrationPointMetaData,
352 // etc., which are not "real" integration points, are copied "as is"
353 // (i.e. fully) for every partition.
354 if (pv->getPropertyName().find("_ip") == std::string::npos)
355 {
356 partitioned_pv_size = pv->size() * partitions.size();
357 }
358
359 element_ip_data_offsets =
361 global_mesh_elements, *pv, properties);
362 }
363
364 auto partitioned_pv = partitioned_properties.createNewPropertyVector<T>(
365 pv->getPropertyName(), pv->getMeshItemType(),
367 if (partitioned_pv == nullptr)
368 {
369 OGS_FATAL(
370 "Could not create partitioned property vector {:s} for {} data "
371 "array.",
373 }
374 partitioned_pv->resize(partitioned_pv_size);
375
376 auto copy_property_vector_values =
377 [&](Partition const& p, std::size_t offset)
378 {
380 {
381 return copyFieldPropertyDataToPartitions(properties, p, offset,
382 element_ip_data_offsets,
383 *pv, *partitioned_pv);
384 }
385
386 if (item_type == MeshLib::MeshItemType::Node)
387 {
388 return copyNodePropertyVectorValues(p, offset, *pv,
389 *partitioned_pv);
390 }
391 if (item_type == MeshLib::MeshItemType::Cell)
392 {
393 return copyCellPropertyVectorValues(p, offset, *pv,
394 *partitioned_pv);
395 }
396
397 OGS_FATAL(
398 "Copying of property vector values for mesh item type {:s} is not "
399 "implemented.",
400 toString(item_type));
401 };
402
403 std::size_t position_offset(0);
404 for (auto p : partitions)
405 {
406 position_offset += copy_property_vector_values(p, position_offset);
407 }
408 return true;
409}
410
411void addVtkGhostTypeProperty(MeshLib::Properties& partitioned_properties,
412 std::vector<Partition> const& partitions,
413 std::size_t const total_number_of_cells)
414{
415 auto* vtk_ghost_type =
416 partitioned_properties.createNewPropertyVector<unsigned char>(
417 "vtkGhostType", MeshLib::MeshItemType::Cell);
418 if (vtk_ghost_type == nullptr)
419 {
420 OGS_FATAL("Could not create vtkGhostType cell data array.");
421 }
422
423 vtk_ghost_type->resize(total_number_of_cells);
424 std::size_t offset = 0;
425 for (auto const& partition : partitions)
426 {
427 offset += partition.regular_elements.size();
428 for (std::size_t i = 0; i < partition.ghost_elements.size(); ++i)
429 {
430 if (partition.duplicate_ghost_cell[i])
431 {
432 (*vtk_ghost_type)[offset + i] |=
433 vtkDataSetAttributes::DUPLICATECELL;
434 }
435 }
436 offset += partition.ghost_elements.size();
437 }
438}
439
442 std::unique_ptr<MeshLib::Mesh> const& mesh,
443 std::vector<Partition>& partitions)
444{
445 using namespace MeshLib;
446
447 MeshLib::Properties const& properties = mesh->getProperties();
448
449 // Count the number of integration point data of all partitions:
450 setIntegrationPointNumberOfPartition(properties, partitions);
451
452 Properties partitioned_properties;
453 auto count_tuples = [&](MeshItemType const mesh_item_type)
454 {
455 return std::accumulate(
456 begin(partitions), end(partitions), 0,
457 [&](std::size_t const sum, Partition const& p)
458 { return sum + p.numberOfMeshItems(mesh_item_type); });
459 };
460
461 std::map<MeshItemType, std::size_t> const total_number_of_tuples = {
462 {MeshItemType::Cell, count_tuples(MeshItemType::Cell)},
463 {MeshItemType::Node, count_tuples(MeshItemType::Node)},
464 {MeshItemType::IntegrationPoint,
465 count_tuples(MeshItemType::IntegrationPoint)}};
466
467 DBUG(
468 "total number of tuples after partitioning defined for cells is {:d} "
469 "and for nodes {:d} and for integration points {:d}.",
470 total_number_of_tuples.at(MeshItemType::Cell),
471 total_number_of_tuples.at(MeshItemType::Node),
472 total_number_of_tuples.at(MeshItemType::IntegrationPoint));
473
474 // 1 create new PV
475 // 2 resize the PV with total_number_of_tuples
476 // 3 copy the values according to the partition info
478 properties,
479 [&](auto type, auto const property)
480 {
482 mesh->getElements(), partitioned_properties, properties,
483 partitions,
484 dynamic_cast<PropertyVector<decltype(type)> const*>(property),
485 total_number_of_tuples);
486 });
487
488 addVtkGhostTypeProperty(partitioned_properties,
489 partitions,
490 total_number_of_tuples.at(MeshItemType::Cell));
491
492 return partitioned_properties;
493}
494
496 std::vector<Partition>& partitions)
497{
498 std::vector<bool> cell_visited(mesh.getElements().size(), false);
499
500 for (auto& partition : partitions)
501 {
502 partition.duplicate_ghost_cell.resize(partition.ghost_elements.size(),
503 true);
504
505 for (std::size_t i = 0; i < partition.ghost_elements.size(); i++)
506 {
507 const auto& ghost_element = *partition.ghost_elements[i];
508 if (!cell_visited[ghost_element.getID()])
509 {
510 cell_visited[ghost_element.getID()] = true;
511 partition.duplicate_ghost_cell[i] = false;
512 }
513 }
514 }
515}
516
518 std::vector<MeshLib::Element*> const& global_mesh_elements,
519 MeshLib::Properties const& properties)
520{
521 for (auto const& [name, property] : properties)
522 {
523 auto const item_type = property->getMeshItemType();
524
526 {
527 continue;
528 }
529
530 // For special field data such as OGS_VERSION, IntegrationPointMetaData,
531 // etc., which are not "real" integration points:
532 if (property->getPropertyName().find("_ip") == std::string::npos)
533 {
534 continue;
535 }
536
537 std::size_t number_of_total_integration_points = 0;
538 auto const ip_meta_data = MeshLib::getIntegrationPointMetaData(
539 properties, property->getPropertyName());
540 for (auto const element : global_mesh_elements)
541 {
542 int const number_of_integration_points =
544 *element);
545 number_of_total_integration_points += number_of_integration_points;
546 }
547
548 const auto pv =
549 dynamic_cast<MeshLib::PropertyVector<double> const*>(property);
550 std::size_t const component_number = pv->getNumberOfGlobalComponents();
551 if (pv->size() != number_of_total_integration_points * component_number)
552 {
553 OGS_FATAL(
554 "The property vector's size {:d} for integration point data "
555 "{:s} does not match its actual size {:d}. The field data in "
556 "the vtu file are wrong.",
557 pv->size(), name,
558 number_of_total_integration_points * component_number);
559 }
560 }
561}
562
563std::vector<std::vector<std::size_t>> computePartitionIDPerElement(
564 std::vector<std::size_t> const& node_partition_map,
565 std::vector<MeshLib::Element*> const& elements,
566 std::vector<std::size_t> const& bulk_node_ids)
567{
568 auto node_partition_ids = ranges::views::transform(
569 [&](MeshLib::Element const* const element)
570 {
571 auto node_lookup = ranges::views::transform(
572 [&](std::size_t const i)
573 { return node_partition_map[bulk_node_ids[i]]; });
574
575 return element->nodes() | MeshLib::views::ids | node_lookup |
576 ranges::to<std::vector>;
577 });
578
579 return elements | node_partition_ids | ranges::to<std::vector>;
580}
581
583 std::vector<Partition>& partitions,
584 std::vector<std::size_t> const& nodes_partition_ids,
585 std::vector<MeshLib::Node*> const& nodes,
586 std::vector<std::size_t> const& bulk_node_ids)
587{
588 for (auto const* const node : nodes)
589 {
590 partitions[nodes_partition_ids[bulk_node_ids[node->getID()]]]
591 .nodes.push_back(node);
592 }
593}
594
596 MeshLib::Mesh const& mesh)
597{
598 std::vector<MeshLib::Node const*> higher_order_nodes;
599 // after splitIntoBaseAndHigherOrderNodes() partition.nodes contains only
600 // base nodes
601 std::tie(partition.nodes, higher_order_nodes) =
603 partition.number_of_regular_base_nodes = partition.nodes.size();
604 std::copy(begin(higher_order_nodes), end(higher_order_nodes),
605 std::back_inserter(partition.nodes));
606 partition.number_of_regular_nodes = partition.nodes.size();
607}
608
610 std::vector<Partition>& partitions, MeshLib::Mesh const& mesh)
611{
612 for (auto& partition : partitions)
613 {
615 }
616}
617
618void setNumberOfNodesInPartitions(std::vector<Partition>& partitions,
619 MeshLib::Mesh const& mesh)
620{
621 auto const number_of_mesh_base_nodes = mesh.computeNumberOfBaseNodes();
622 auto const number_of_mesh_all_nodes = mesh.getNumberOfNodes();
623 for (auto& partition : partitions)
624 {
625 partition.number_of_regular_nodes = partition.nodes.size();
626 partition.number_of_mesh_base_nodes = number_of_mesh_base_nodes;
627 partition.number_of_mesh_all_nodes = number_of_mesh_all_nodes;
628 }
629}
630
632 std::vector<Partition>& partitions,
633 MeshLib::Mesh const& mesh,
634 std::vector<std::vector<std::size_t>> const& partition_ids_per_element)
635{
636 for (auto const& element : mesh.getElements())
637 {
638 auto const element_id = element->getID();
639 auto node_partition_ids = partition_ids_per_element[element_id];
640 // make partition ids unique
641 std::sort(node_partition_ids.begin(), node_partition_ids.end());
642 auto last =
643 std::unique(node_partition_ids.begin(), node_partition_ids.end());
644 node_partition_ids.erase(last, node_partition_ids.end());
645
646 // all element nodes belong to the same partition => regular element
647 if (node_partition_ids.size() == 1)
648 {
649 partitions[node_partition_ids[0]].regular_elements.push_back(
650 element);
651 }
652 else
653 {
654 for (auto const partition_id : node_partition_ids)
655 {
656 partitions[partition_id].ghost_elements.push_back(element);
657 }
658 }
659 }
660}
661
662// determine and append ghost nodes to partition.nodes in the following order
663// [base nodes, higher order nodes, base ghost nodes, higher order ghost
664// nodes]
666 std::vector<Partition>& partitions, MeshLib::Mesh const& mesh,
667 std::vector<std::size_t> const& nodes_partition_ids,
668 std::vector<std::size_t> const& node_id_mapping)
669{
670 for (std::size_t part_id = 0; part_id < partitions.size(); part_id++)
671 {
672 auto& partition = partitions[part_id];
673 std::vector<MeshLib::Node*> base_ghost_nodes;
674 std::vector<MeshLib::Node*> higher_order_ghost_nodes;
675 std::tie(base_ghost_nodes, higher_order_ghost_nodes) =
677 part_id, mesh.getNodes(), partition.ghost_elements,
678 nodes_partition_ids, mesh, node_id_mapping);
679
680 std::copy(begin(base_ghost_nodes), end(base_ghost_nodes),
681 std::back_inserter(partition.nodes));
682
683 partition.number_of_base_nodes =
684 partition.number_of_regular_base_nodes + base_ghost_nodes.size();
685
686 std::copy(begin(higher_order_ghost_nodes),
687 end(higher_order_ghost_nodes),
688 std::back_inserter(partition.nodes));
689 }
690}
691
692void partitionMesh(std::vector<Partition>& partitions,
693 MeshLib::Mesh const& mesh,
694 std::vector<std::size_t> const& nodes_partition_ids,
695 std::vector<std::size_t> const& bulk_node_ids)
696{
697 BaseLib::RunTime run_timer;
698 run_timer.start();
699 auto const partition_ids_per_element = computePartitionIDPerElement(
700 nodes_partition_ids, mesh.getElements(), bulk_node_ids);
701 INFO("partitionMesh(): Partition IDs per element computed in {:g} s",
702 run_timer.elapsed());
703
704 run_timer.start();
705 distributeNodesToPartitions(partitions, nodes_partition_ids,
706 mesh.getNodes(), bulk_node_ids);
707 INFO("partitionMesh(): distribute nodes to partitions took {:g} s",
708 run_timer.elapsed());
709
710 run_timer.start();
712 INFO(
713 "partitionMesh(): sorting [base nodes | higher order nodes] took {:g} "
714 "s",
715 run_timer.elapsed());
716
717 run_timer.start();
718 setNumberOfNodesInPartitions(partitions, mesh);
719 INFO(
720 "partitionMesh(): setting number of nodes and of all mesh base nodes "
721 "took {:g} s",
722 run_timer.elapsed());
723
724 run_timer.start();
725 distributeElementsIntoPartitions(partitions, mesh,
726 partition_ids_per_element);
727 INFO("partitionMesh(): distribute elements into partitions took {:g} s",
728 run_timer.elapsed());
729
730 run_timer.start();
732 partitions, mesh, nodes_partition_ids, bulk_node_ids);
733 INFO("partitionMesh(): determine / append ghost nodes took {:g} s",
734 run_timer.elapsed());
735
736 run_timer.start();
737 markDuplicateGhostCells(mesh, partitions);
738 INFO("partitionMesh(): markDuplicateGhostCells took {:g} s",
739 run_timer.elapsed());
740}
741
743{
744 std::vector<std::size_t> bulk_node_ids(_mesh->getNumberOfNodes());
745 std::iota(bulk_node_ids.begin(), bulk_node_ids.end(), 0);
746
748
750
751 // In case the field data in the vtu file are manually added, e.g. by using
752 // some tools, the size of the field property vector has to be checked.
753 checkFieldPropertyVectorSize(_mesh->getElements(), _mesh->getProperties());
754
756
758}
759
761 std::vector<Partition> const& partitions,
762 MeshLib::Properties& partitioned_properties)
763{
764 auto const bulk_node_ids_string =
766 if (partitioned_properties.hasPropertyVector(bulk_node_ids_string))
767 {
769 partitioned_properties.getPropertyVector<std::size_t>(
770 bulk_node_ids_string, MeshLib::MeshItemType::Node, 1),
771 partitions);
772 }
773 auto const bulk_element_ids_string =
775 if (partitioned_properties.hasPropertyVector<std::size_t>(
776 static_cast<std::string>(bulk_element_ids_string),
778 {
780 partitioned_properties.getPropertyVector<std::size_t>(
781 bulk_element_ids_string, MeshLib::MeshItemType::Cell, 1),
782 partitions);
783 }
784}
785
787 MeshLib::PropertyVector<std::size_t>* const bulk_node_ids_pv,
788 std::vector<Partition> const& local_partitions) const
789{
790 if (bulk_node_ids_pv == nullptr)
791 {
792 return;
793 }
794
795 auto& bulk_node_ids = *bulk_node_ids_pv;
796
797 std::size_t offset = 0; // offset in property vector for current partition
798
799 assert(_partitions.size() == local_partitions.size());
800 int const n_partitions = static_cast<int>(_partitions.size());
801 for (int partition_id = 0; partition_id < n_partitions; ++partition_id)
802 {
803 auto const& bulk_partition = _partitions[partition_id];
804 auto const& local_partition = local_partitions[partition_id];
805
806 // Create global-to-local node id mapping for the bulk partition.
807 auto const& bulk_nodes = bulk_partition.nodes;
808 auto const n_bulk_nodes = bulk_nodes.size();
809 std::map<std::size_t, std::size_t> global_to_local;
810 for (std::size_t local_node_id = 0; local_node_id < n_bulk_nodes;
811 ++local_node_id)
812 {
813 global_to_local[bulk_nodes[local_node_id]->getID()] = local_node_id;
814 }
815
816 auto const& local_nodes = local_partition.nodes;
817 auto const n_local_nodes = local_nodes.size();
818 for (std::size_t local_node_id = 0; local_node_id < n_local_nodes;
819 ++local_node_id)
820 {
821 bulk_node_ids[offset + local_node_id] =
822 global_to_local[bulk_node_ids[offset + local_node_id]];
823 }
824 offset += n_local_nodes;
825 }
826}
827
829 MeshLib::PropertyVector<std::size_t>* const bulk_element_ids_pv,
830 std::vector<Partition> const& local_partitions) const
831{
832 if (bulk_element_ids_pv == nullptr)
833 {
834 return;
835 }
836
837 auto& bulk_element_ids = *bulk_element_ids_pv;
838
839 std::size_t offset = 0; // offset in property vector for current partition
840
841 assert(_partitions.size() == local_partitions.size());
842 int const n_partitions = static_cast<int>(_partitions.size());
843 for (int partition_id = 0; partition_id < n_partitions; ++partition_id)
844 {
845 auto const& bulk_partition = _partitions[partition_id];
846 auto const& local_partition = local_partitions[partition_id];
847
848 // Create global-to-local element id mapping for the bulk partition.
849 std::map<std::size_t, std::size_t> global_to_local;
850 auto map_elements =
851 [&global_to_local](
852 std::vector<MeshLib::Element const*> const& elements,
853 std::size_t const offset)
854 {
855 auto const n_elements = elements.size();
856 for (std::size_t e = 0; e < n_elements; ++e)
857 {
858 global_to_local[elements[e]->getID()] = offset + e;
859 }
860 };
861
862 map_elements(bulk_partition.regular_elements, 0);
863 map_elements(bulk_partition.ghost_elements,
864 bulk_partition.regular_elements.size());
865
866 // Renumber the local bulk_element_ids map.
867 auto renumber_elements =
868 [&bulk_element_ids, &global_to_local](
869 std::vector<MeshLib::Element const*> const& elements,
870 std::size_t const offset)
871 {
872 auto const n_elements = elements.size();
873 for (std::size_t e = 0; e < n_elements; ++e)
874 {
875 bulk_element_ids[offset + e] =
876 global_to_local[bulk_element_ids[offset + e]];
877 }
878 return n_elements;
879 };
880
881 offset += renumber_elements(local_partition.regular_elements, offset);
882 offset += renumber_elements(local_partition.ghost_elements, offset);
883 }
884}
885
887 MeshLib::Mesh const& mesh) const
888{
889 auto const bulk_node_ids_string =
891 auto const& bulk_node_ids =
892 mesh.getProperties().getPropertyVector<std::size_t>(
893 bulk_node_ids_string, MeshLib::MeshItemType::Node, 1);
894
895 std::vector<Partition> partitions(_partitions.size());
896
897 partitionMesh(partitions, mesh, _nodes_partition_ids, *bulk_node_ids);
898
899 return partitions;
900}
901
903{
904 std::size_t node_global_id_offset = 0;
905 // Renumber the global indices.
906 for (auto& partition : _partitions)
907 {
908 for (std::size_t i = 0; i < partition.number_of_regular_nodes; i++)
909 {
910 _nodes_global_ids[partition.nodes[i]->getID()] =
911 node_global_id_offset++;
912 }
913 }
914}
915
916template <typename T>
917void writePropertyVectorValues(std::ostream& os,
919{
920 os.write(reinterpret_cast<const char*>(pv.data()), pv.size() * sizeof(T));
921}
922
923template <typename T>
925 MeshLib::MeshItemType const mesh_item_type,
926 std::ostream& out_val, std::ostream& out_meta)
927{
928 if (pv == nullptr)
929 {
930 return false;
931 }
932 // skip property of different mesh item type. Return true, because this
933 // operation was successful.
934 if (pv->getMeshItemType() != mesh_item_type)
935 {
936 return true;
937 }
938
940 pvmd.property_name = pv->getPropertyName();
944 writePropertyVectorValues(out_val, *pv);
946 return true;
947}
948
949void writeProperties(const std::string& file_name_base,
950 MeshLib::Properties const& partitioned_properties,
951 std::vector<Partition> const& partitions,
952 MeshLib::MeshItemType const mesh_item_type)
953{
954 auto const number_of_properties =
955 partitioned_properties.size(mesh_item_type);
956 if (number_of_properties == 0)
957 {
958 return;
959 }
960
961 auto const file_name_infix = toString(mesh_item_type);
962
963 auto const file_name_cfg = file_name_base + "_partitioned_" +
964 file_name_infix + "_properties_cfg" +
965 std::to_string(partitions.size()) + ".bin";
966 std::ofstream out(file_name_cfg, std::ios::binary);
967 if (!out)
968 {
969 OGS_FATAL("Could not open file '{:s}' for output.", file_name_cfg);
970 }
971
972 auto const file_name_val = file_name_base + "_partitioned_" +
973 file_name_infix + "_properties_val" +
974 std::to_string(partitions.size()) + ".bin";
975 std::ofstream out_val(file_name_val, std::ios::binary);
976 if (!out_val)
977 {
978 OGS_FATAL("Could not open file '{:s}' for output.", file_name_val);
979 }
980
981 BaseLib::writeValueBinary(out, number_of_properties);
982
984 partitioned_properties,
985 [&](auto type, auto const& property)
986 {
988 dynamic_cast<MeshLib::PropertyVector<decltype(type)> const*>(
989 property),
990 mesh_item_type, out_val, out);
991 });
992
993 unsigned long offset = 0;
994 for (const auto& partition : partitions)
995 {
997 offset, static_cast<unsigned long>(
998 partition.numberOfMeshItems(mesh_item_type))};
999 DBUG(
1000 "Write meta data for node-based PropertyVector: global offset "
1001 "{:d}, number of tuples {:d}",
1002 pvpmd.offset, pvpmd.number_of_tuples);
1004 offset += pvpmd.number_of_tuples;
1005 }
1006}
1007
1009{
1013
1014 std::ostream& writeConfig(std::ostream& os) const;
1015};
1016
1017std::ostream& ConfigOffsets::writeConfig(std::ostream& os) const
1018{
1019 os.write(reinterpret_cast<const char*>(this), sizeof(ConfigOffsets));
1020
1021 static long reserved = 0; // Value reserved in the binary format, not used
1022 // in the partitioning process.
1023 return os.write(reinterpret_cast<const char*>(&reserved), sizeof(long));
1024}
1025
1032
1034{
1035 return {static_cast<long>(partition.nodes.size()),
1036 static_cast<long>(partition.regular_elements.size() +
1038 partition.regular_elements)),
1039 static_cast<long>(partition.ghost_elements.size() +
1041 partition.ghost_elements))};
1042}
1043
1045 PartitionOffsets const& offsets)
1046{
1047 return {
1048 static_cast<long>(oldConfig.node_rank_offset +
1049 offsets.node * sizeof(MeshLib::IO::NodeData)),
1050 // Offset the ending entry of the element integer variables of
1051 // the non-ghost elements of this partition in the vector of elem_info.
1052 static_cast<long>(oldConfig.element_rank_offset +
1053 offsets.regular_elements * sizeof(long)),
1054
1055 // Offset the ending entry of the element integer variables of
1056 // the ghost elements of this partition in the vector of elem_info.
1057 static_cast<long>(oldConfig.ghost_element_rank_offset +
1058 offsets.ghost_elements * sizeof(long))};
1059}
1060
1066std::tuple<std::vector<long>, std::vector<long>> writeConfigData(
1067 const std::string& file_name_base, std::vector<Partition> const& partitions)
1068{
1069 auto const file_name_cfg = file_name_base + "_partitioned_msh_cfg" +
1070 std::to_string(partitions.size()) + ".bin";
1071 std::ofstream of_bin_cfg(file_name_cfg, std::ios::binary);
1072 if (!of_bin_cfg)
1073 {
1074 OGS_FATAL("Could not open file '{:s}' for output.", file_name_cfg);
1075 }
1076
1077 std::vector<long> partitions_element_offsets;
1078 partitions_element_offsets.reserve(partitions.size());
1079 std::vector<long> partitions_ghost_element_offsets;
1080 partitions_ghost_element_offsets.reserve(partitions.size());
1081
1082 ConfigOffsets config_offsets = {0, 0, 0}; // 0 for first partition.
1083 for (const auto& partition : partitions)
1084 {
1085 partition.writeConfig(of_bin_cfg);
1086
1087 config_offsets.writeConfig(of_bin_cfg);
1088 auto const& partition_offsets = computePartitionOffsets(partition);
1089 config_offsets =
1090 incrementConfigOffsets(config_offsets, partition_offsets);
1091
1092 partitions_element_offsets.push_back(
1093 partition_offsets.regular_elements);
1094 partitions_ghost_element_offsets.push_back(
1095 partition_offsets.ghost_elements);
1096 }
1097
1098 return std::make_tuple(partitions_element_offsets,
1099 partitions_ghost_element_offsets);
1100}
1101
1110 const MeshLib::Element& elem,
1111 const std::unordered_map<std::size_t, long>& local_node_ids,
1112 std::vector<long>& elem_info,
1113 long& counter)
1114{
1115 constexpr unsigned mat_id =
1116 0; // TODO: Material ID to be set from the mesh data
1117 const long nn = elem.getNumberOfNodes();
1118 elem_info[counter++] = mat_id;
1119 elem_info[counter++] = static_cast<long>(elem.getCellType());
1120 elem_info[counter++] = nn;
1121
1122 for (long i = 0; i < nn; i++)
1123 {
1124 auto const& n = *elem.getNode(i);
1125 elem_info[counter++] = local_node_ids.at(n.getID());
1126 }
1127}
1128
1130std::unordered_map<std::size_t, long> enumerateLocalNodeIds(
1131 std::vector<MeshLib::Node const*> const& nodes)
1132{
1133 std::unordered_map<std::size_t, long> local_ids;
1134 local_ids.reserve(nodes.size());
1135
1136 long local_node_id = 0;
1137 for (const auto* node : nodes)
1138 {
1139 local_ids[node->getID()] = local_node_id++;
1140 }
1141 return local_ids;
1142}
1143
1150void writeElements(std::string const& file_name_base,
1151 std::vector<Partition> const& partitions,
1152 std::vector<long> const& regular_element_offsets,
1153 std::vector<long> const& ghost_element_offsets)
1154{
1155 const std::string npartitions_str = std::to_string(partitions.size());
1156
1157 auto const file_name_ele =
1158 file_name_base + "_partitioned_msh_ele" + npartitions_str + ".bin";
1159 std::ofstream element_info_os(file_name_ele, std::ios::binary);
1160 if (!element_info_os)
1161 {
1162 OGS_FATAL("Could not open file '{:s}' for output.", file_name_ele);
1163 }
1164
1165 auto const file_name_ele_g =
1166 file_name_base + "_partitioned_msh_ele_g" + npartitions_str + ".bin";
1167 std::ofstream ghost_element_info_os(file_name_ele_g, std::ios::binary);
1168 if (!ghost_element_info_os)
1169 {
1170 OGS_FATAL("Could not open file '{:s}' for output.", file_name_ele_g);
1171 }
1172
1173 for (std::size_t i = 0; i < partitions.size(); i++)
1174 {
1175 const auto& partition = partitions[i];
1176 auto const local_node_ids = enumerateLocalNodeIds(partition.nodes);
1177
1178 // Vector containing the offsets of the regular elements of this
1179 // partition
1180 std::vector<long> ele_info(regular_element_offsets[i]);
1181
1182 auto writeElementData =
1183 [&local_node_ids](
1184 std::vector<MeshLib::Element const*> const& elements,
1185 long const element_offsets,
1186 std::ofstream& output_stream)
1187 {
1188 long counter = elements.size();
1189 std::vector<long> ele_info(element_offsets);
1190
1191 for (std::size_t j = 0; j < elements.size(); j++)
1192 {
1193 const auto* elem = elements[j];
1194 ele_info[j] = counter;
1195 getElementIntegerVariables(*elem, local_node_ids, ele_info,
1196 counter);
1197 }
1198 // Write vector data of regular elements
1199 output_stream.write(reinterpret_cast<const char*>(ele_info.data()),
1200 ele_info.size() * sizeof(long));
1201 };
1202
1203 // regular elements.
1204 writeElementData(partition.regular_elements, regular_element_offsets[i],
1205 element_info_os);
1206 // Ghost elements
1207 writeElementData(partition.ghost_elements, ghost_element_offsets[i],
1208 ghost_element_info_os);
1209 }
1210}
1211
1216void writeNodes(const std::string& file_name_base,
1217 std::vector<Partition> const& partitions,
1218 std::vector<std::size_t> const& global_node_ids)
1219{
1220 auto const file_name = file_name_base + "_partitioned_msh_nod" +
1221 std::to_string(partitions.size()) + ".bin";
1222 std::ofstream os(file_name, std::ios::binary);
1223 if (!os)
1224 {
1225 OGS_FATAL("Could not open file '{:s}' for output.", file_name);
1226 }
1227
1228 for (const auto& partition : partitions)
1229 {
1230 partition.writeNodes(os, global_node_ids);
1231 }
1232}
1233
1234void NodeWiseMeshPartitioner::write(const std::string& file_name_base)
1235{
1242
1243 const auto elements_offsets = writeConfigData(file_name_base, _partitions);
1244
1245 const std::vector<IntegerType>& regular_element_offsets =
1246 std::get<0>(elements_offsets);
1247 const std::vector<IntegerType>& ghost_element_offsets =
1248 std::get<1>(elements_offsets);
1249 writeElements(file_name_base, _partitions, regular_element_offsets,
1250 ghost_element_offsets);
1251
1252 writeNodes(file_name_base, _partitions, _nodes_global_ids);
1253}
1254
1256 std::string const& output_filename_base,
1257 std::vector<Partition> const& partitions,
1258 MeshLib::Properties const& partitioned_properties) const
1259{
1260 writeNodes(output_filename_base, partitions, _nodes_global_ids);
1261
1262 const auto elem_integers =
1263 writeConfigData(output_filename_base, partitions);
1264
1265 const std::vector<IntegerType>& num_elem_integers =
1266 std::get<0>(elem_integers);
1267 const std::vector<IntegerType>& num_g_elem_integers =
1268 std::get<1>(elem_integers);
1269 writeElements(output_filename_base, partitions, num_elem_integers,
1270 num_g_elem_integers);
1271
1272 writeProperties(output_filename_base, partitioned_properties, partitions,
1274 writeProperties(output_filename_base, partitioned_properties, partitions,
1276}
1277} // namespace ApplicationUtils
#define OGS_FATAL(...)
Definition Error.h:26
Filename manipulation routines.
void INFO(fmt::format_string< Args... > fmt, Args &&... args)
Definition Logging.h:35
void DBUG(fmt::format_string< Args... > fmt, Args &&... args)
Definition Logging.h:30
Definition of mesh-related Enumerations.
Declare a class to perform node wise mesh partitioning.
void applyToPropertyVectors(Properties const &properties, Function f)
Definition of the RunTime class.
Implementation of the VtuInterface class.
void renumberBulkElementIdsProperty(MeshLib::PropertyVector< std::size_t > *const bulk_element_ids_pv, std::vector< Partition > const &local_partitions) const
std::vector< Partition > partitionOtherMesh(MeshLib::Mesh const &mesh) const
void write(const std::string &file_name_base)
void renumberBulkIdsProperty(std::vector< Partition > const &partitions, MeshLib::Properties &partitioned_properties)
void renumberBulkNodeIdsProperty(MeshLib::PropertyVector< std::size_t > *const bulk_node_ids, std::vector< Partition > const &local_partitions) const
std::unique_ptr< MeshLib::Mesh > _mesh
Pointer to a mesh object.
MeshLib::Properties _partitioned_properties
Properties where values at ghost nodes and extra nodes are inserted.
std::vector< std::size_t > _nodes_global_ids
Global IDs of all nodes after partitioning.
std::vector< Partition > _partitions
Data for all partitions.
std::vector< std::size_t > _nodes_partition_ids
Partition IDs of each nodes.
void writeOtherMesh(std::string const &output_filename_base, std::vector< Partition > const &partitions, MeshLib::Properties const &partitioned_properties) const
Count the running time.
Definition RunTime.h:29
double elapsed() const
Get the elapsed time in seconds.
Definition RunTime.h:42
void start()
Start the timer.
Definition RunTime.h:32
virtual CellType getCellType() const =0
virtual unsigned getNumberOfNodes() const =0
virtual const Node * getNode(unsigned idx) const =0
constexpr std::span< Node *const > nodes() const
Span of element's nodes, their pointers actually.
Definition Element.h:72
std::vector< Node * > const & getNodes() const
Get the nodes-vector for the mesh.
Definition Mesh.h:108
std::vector< Element * > const & getElements() const
Get the element-vector for the mesh.
Definition Mesh.h:111
std::size_t computeNumberOfBaseNodes() const
Get the number of base nodes.
Definition Mesh.cpp:238
Properties & getProperties()
Definition Mesh.h:136
std::size_t getNumberOfNodes() const
Get the number of nodes.
Definition Mesh.h:102
std::vector< Element const * > const & getElementsConnectedToNode(std::size_t node_id) const
Definition Mesh.cpp:256
Property manager on mesh items. Class Properties manages scalar, vector or matrix properties....
Definition Properties.h:33
bool hasPropertyVector(std::string_view name) const
std::map< std::string, PropertyVectorBase * >::size_type size() const
PropertyVector< T > * createNewPropertyVector(std::string_view name, MeshItemType mesh_item_type, std::size_t n_components=1)
PropertyVector< T > const * getPropertyVector(std::string_view name) const
MeshItemType getMeshItemType() const
int getNumberOfGlobalComponents() const
std::string const & getPropertyName() const
std::size_t getNumberOfTuples() const
std::size_t size() const
std::tuple< std::vector< MeshLib::Node * >, std::vector< MeshLib::Node * > > findGhostNodesInPartition(std::size_t const part_id, std::vector< MeshLib::Node * > const &nodes, std::vector< MeshLib::Element const * > const &ghost_elements, std::vector< std::size_t > const &partition_ids, MeshLib::Mesh const &mesh, std::vector< std::size_t > const &node_id_mapping)
std::size_t copyCellPropertyVectorValues(Partition const &p, std::size_t const offset, MeshLib::PropertyVector< T > const &pv, MeshLib::PropertyVector< T > &partitioned_pv)
std::unordered_map< std::size_t, long > enumerateLocalNodeIds(std::vector< MeshLib::Node const * > const &nodes)
Generates a mapping of given node ids to a new local (renumbered) node ids.
void addVtkGhostTypeProperty(MeshLib::Properties &partitioned_properties, std::vector< Partition > const &partitions, std::size_t const total_number_of_cells)
bool writePropertyVector(MeshLib::PropertyVector< T > const *const pv, MeshLib::MeshItemType const mesh_item_type, std::ostream &out_val, std::ostream &out_meta)
void checkFieldPropertyVectorSize(std::vector< MeshLib::Element * > const &global_mesh_elements, MeshLib::Properties const &properties)
void writeNodes(const std::string &file_name_base, std::vector< Partition > const &partitions, std::vector< std::size_t > const &global_node_ids)
ConfigOffsets incrementConfigOffsets(ConfigOffsets const &oldConfig, PartitionOffsets const &offsets)
void setIntegrationPointNumberOfPartition(MeshLib::Properties const &properties, std::vector< Partition > &partitions)
void distributeNodesToPartitions(std::vector< Partition > &partitions, std::vector< std::size_t > const &nodes_partition_ids, std::vector< MeshLib::Node * > const &nodes, std::vector< std::size_t > const &bulk_node_ids)
void reorderNodesIntoBaseAndHigherOrderNodes(Partition &partition, MeshLib::Mesh const &mesh)
void reorderNodesIntoBaseAndHigherOrderNodesPerPartition(std::vector< Partition > &partitions, MeshLib::Mesh const &mesh)
MeshLib::Properties partitionProperties(std::unique_ptr< MeshLib::Mesh > const &mesh, std::vector< Partition > &partitions)
Partition existing properties and add vtkGhostType cell data array property.
void setNumberOfNodesInPartitions(std::vector< Partition > &partitions, MeshLib::Mesh const &mesh)
std::pair< std::vector< MeshLib::Node const * >, std::vector< MeshLib::Node const * > > splitIntoBaseAndHigherOrderNodes(std::vector< MeshLib::Node const * > const &nodes, MeshLib::Mesh const &mesh)
PartitionOffsets computePartitionOffsets(Partition const &partition)
NodeWiseMeshPartitioner::IntegerType getNumberOfIntegerVariablesOfElements(std::vector< const MeshLib::Element * > const &elements)
void determineAndAppendGhostNodesToPartitions(std::vector< Partition > &partitions, MeshLib::Mesh const &mesh, std::vector< std::size_t > const &nodes_partition_ids, std::vector< std::size_t > const &node_id_mapping)
void partitionMesh(std::vector< Partition > &partitions, MeshLib::Mesh const &mesh, std::vector< std::size_t > const &nodes_partition_ids, std::vector< std::size_t > const &bulk_node_ids)
std::tuple< std::vector< long >, std::vector< long > > writeConfigData(const std::string &file_name_base, std::vector< Partition > const &partitions)
std::size_t copyFieldPropertyDataToPartitions(MeshLib::Properties const &properties, Partition const &p, std::size_t const id_offset_partition, std::vector< std::size_t > const &element_ip_data_offsets, MeshLib::PropertyVector< T > const &pv, MeshLib::PropertyVector< T > &partitioned_pv)
void writePropertyVectorValues(std::ostream &os, MeshLib::PropertyVector< T > const &pv)
void getElementIntegerVariables(const MeshLib::Element &elem, const std::unordered_map< std::size_t, long > &local_node_ids, std::vector< long > &elem_info, long &counter)
void markDuplicateGhostCells(MeshLib::Mesh const &mesh, std::vector< Partition > &partitions)
void distributeElementsIntoPartitions(std::vector< Partition > &partitions, MeshLib::Mesh const &mesh, std::vector< std::vector< std::size_t > > const &partition_ids_per_element)
std::size_t copyNodePropertyVectorValues(Partition const &p, std::size_t const offset, MeshLib::PropertyVector< T > const &pv, MeshLib::PropertyVector< T > &partitioned_pv)
std::size_t partitionLookup(std::size_t const &node_id, std::vector< std::size_t > const &partition_ids, std::vector< std::size_t > const &node_id_mapping)
std::vector< std::vector< std::size_t > > computePartitionIDPerElement(std::vector< std::size_t > const &node_partition_map, std::vector< MeshLib::Element * > const &elements, std::vector< std::size_t > const &bulk_node_ids)
void writeProperties(const std::string &file_name_base, MeshLib::Properties const &partitioned_properties, std::vector< Partition > const &partitions, MeshLib::MeshItemType const mesh_item_type)
void writeElements(std::string const &file_name_base, std::vector< Partition > const &partitions, std::vector< long > const &regular_element_offsets, std::vector< long > const &ghost_element_offsets)
bool copyPropertyVector(std::vector< MeshLib::Element * > const &global_mesh_elements, MeshLib::Properties &partitioned_properties, MeshLib::Properties const &properties, std::vector< Partition > const &partitions, MeshLib::PropertyVector< T > const *const pv, std::map< MeshLib::MeshItemType, std::size_t > const &total_number_of_tuples)
void writeValueBinary(std::ostream &out, T const &val)
write value as binary into the given output stream
void writePropertyVectorPartitionMetaData(std::ostream &os, PropertyVectorPartitionMetaData const &pvpmd)
void writePropertyVectorMetaData(std::ostream &os, PropertyVectorMetaData const &pvmd)
constexpr ranges::views::view_closure ids
For an element of a range view return its id.
Definition Mesh.h:227
IntegrationPointMetaData getIntegrationPointMetaData(MeshLib::Properties const &properties, std::string const &name)
constexpr std::string_view getBulkIDString(MeshItemType mesh_item_type)
Definition Properties.h:185
static constexpr char const * toString(const MeshItemType t)
Returns a char array for a specific MeshItemType.
Definition MeshEnums.h:36
std::vector< std::size_t > getIntegrationPointDataOffsetsOfMeshElements(std::vector< MeshLib::Element * > const &mesh_elements, MeshLib::PropertyVectorBase const &pv, MeshLib::Properties const &properties)
int getNumberOfElementIntegrationPoints(MeshLib::IntegrationPointMetaData const &ip_meta_data, MeshLib::Element const &e)
std::ostream & writeConfig(std::ostream &os) const
std::ostream & writeConfig(std::ostream &os) const
std::size_t numberOfMeshItems(MeshLib::MeshItemType const item_type) const
std::vector< const MeshLib::Element * > regular_elements
Non ghost elements.
std::vector< const MeshLib::Element * > ghost_elements
std::ostream & writeNodes(std::ostream &os, std::vector< std::size_t > const &global_node_ids) const
std::vector< MeshLib::Node const * > nodes
nodes.
struct NodeData used for parallel reading and also partitioning
Definition NodeData.h:18