25namespace HeatTransportBHE
30 std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
31 std::vector<std::unique_ptr<ParameterLib::ParameterBase>>
const& parameters,
32 unsigned const integration_order,
33 std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>&&
38 :
Process(std::move(name), mesh, std::move(jacobian_assembler), parameters,
39 integration_order, std::move(process_variables),
40 std::move(secondary_variables)),
41 _process_data(std::move(process_data)),
42 _bheMeshData(std::move(bhe_mesh_data))
48 "The number of the given BHE properties ({:d}) are not consistent "
49 "with the number of BHE groups in the mesh ({:d}).",
50 _process_data._vec_BHE_property.size(),
51 _bheMeshData.BHE_mat_IDs.size());
55 if (material_ids ==
nullptr)
57 OGS_FATAL(
"Not able to get material IDs! ");
84 std::vector<std::vector<MeshLib::Element*>
const*> vec_var_elements;
87 std::vector<int> vec_n_components{
99 for (
int i = 0; i < n_BHEs; i++)
101 auto const number_of_unknowns =
102 visit([](
auto const& bhe) {
return bhe.number_of_unknowns; },
109 std::make_unique<MeshLib::MeshSubset const>(
_mesh, bhe_nodes));
111 std::generate_n(std::back_inserter(all_mesh_subsets),
118 vec_n_components.push_back(number_of_unknowns);
119 vec_var_elements.push_back(&bhe_elements);
123 std::make_unique<NumLib::LocalToGlobalIndexMap>(
124 std::move(all_mesh_subsets),
136 unsigned const integration_order)
139 std::unordered_map<std::size_t, BHE::BHETypes*> element_to_bhe_map;
141 for (
int i = 0; i < n_BHEs; i++)
144 for (
auto const& e : bhe_elements)
146 element_to_bhe_map[e->getID()] =
163 const double t,
double const dt, std::vector<GlobalVector*>
const& x,
164 std::vector<GlobalVector*>
const& x_prev,
int const process_id,
167 DBUG(
"Assemble HeatTransportBHE process.");
169 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_table = {
186 const double t,
double const dt, std::vector<GlobalVector*>
const& x,
187 std::vector<GlobalVector*>
const& x_prev,
int const process_id,
190 DBUG(
"AssembleWithJacobian HeatTransportBHE process.");
192 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_table = {
199 process_id, &b, &Jac);
203 double const t,
double const dt, std::vector<GlobalVector*>
const& x,
206 DBUG(
"Compute heat flux for HeatTransportBHE process.");
208 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_tables;
209 dof_tables.reserve(x.size());
210 std::generate_n(std::back_inserter(dof_tables), x.size(),
211 [&]() { return _local_to_global_index_map.get(); });
228 auto const Tout_nodes_id =
230 const std::size_t n_bc_nodes = Tout_nodes_id.size();
232 for (std::size_t i = 0; i < n_bc_nodes; i++)
245 DBUG(
"Method `tespySolver' not overridden in Python script.");
249 for (std::size_t i = 0; i < n_bc_nodes; i++)
252 std::get<2>(tespy_result)[i];
254 std::get<3>(tespy_result)[i];
256 auto const tespy_has_converged = std::get<1>(tespy_result);
257 if (tespy_has_converged ==
true)
264 std::vector<GlobalVector*>
const& x,
const double t,
const double dt,
265 int const process_id)
273 auto& [time, Tin_value, Tout_value, Tout_nodes_ids, flowrate] =
281 auto const& solution = *x[process_id];
284 const std::size_t n_bc_nodes = Tout_nodes_ids.size();
285 for (std::size_t i = 0; i < n_bc_nodes; i++)
288 Tout_value[i] = solution[Tout_nodes_ids[i]];
292 auto const server_communication_result =
294 t, dt, Tin_value, Tout_value, flowrate);
298 DBUG(
"Method `serverCommunication' not overridden in Python script.");
301 auto const& [server_communication_Tin_value,
302 server_communication_flowrate] = server_communication_result;
304 std::copy(begin(server_communication_Tin_value),
305 end(server_communication_Tin_value),
307 std::copy(begin(server_communication_flowrate),
308 end(server_communication_flowrate),
313 std::vector<GlobalVector*>
const& x,
314 std::vector<GlobalVector*>
const& ,
const double t,
315 const double dt,
int const process_id)
323 auto& [time, Tin_value, Tout_value, Tout_nodes_ids, flowrate] =
331 auto const& solution = *x[process_id];
334 const std::size_t n_bc_nodes = Tout_nodes_ids.size();
335 for (std::size_t i = 0; i < n_bc_nodes; i++)
338 Tout_value[i] = solution[Tout_nodes_ids[i]];
343 t, dt, Tin_value, Tout_value, flowrate);
347 DBUG(
"Method `serverCommunication' not overridden in Python script.");
352 [[maybe_unused]]
const double t,
double const ,
353 [[maybe_unused]] std::vector<GlobalVector*>
const& x,
354 std::vector<GlobalVector*>
const& ,
int const ,
359 auto M_normal = M.getRawMatrix();
360 auto K_normal = K.getRawMatrix();
361 auto n_original_rows = K_normal.rows();
369 (Eigen::RowVectorXd::Ones(K_normal.rows()) * K_normal.cwiseAbs())
372 M_normal.conservativeResize(
373 M_normal.rows() + n_BHE_bottom_pairs + n_BHE_top_pairs,
375 K_normal.conservativeResize(
376 K_normal.rows() + n_BHE_bottom_pairs + n_BHE_top_pairs,
379 for (std::size_t i = 0; i < n_BHE_bottom_pairs; i++)
381 Eigen::SparseVector<double> M_Plus(M_normal.cols());
383 M_normal.row(n_original_rows + i) = M_Plus;
385 Eigen::SparseVector<double> K_Plus(K_normal.cols());
388 auto const [bhe_idx, first_BHE_bottom_index, second_BHE_bottom_index] =
391 K_Plus.insert(first_BHE_bottom_index) = w_val;
392 K_Plus.insert(second_BHE_bottom_index) = -w_val;
394 K_normal.row(n_original_rows + i) = K_Plus;
397 auto b_normal = b.getRawVector();
398 Eigen::SparseVector<double> b_Plus(b_normal.rows() + n_BHE_bottom_pairs +
403 for (
int i = 0; i < b_normal.innerSize(); ++i)
405 b_Plus.insert(i) = b_normal.coeff(i);
408 for (std::size_t i = 0; i < n_BHE_top_pairs; i++)
410 Eigen::SparseVector<double> M_Plus(M_normal.cols());
412 M_normal.row(n_original_rows + n_BHE_bottom_pairs + i) = M_Plus;
414 Eigen::SparseVector<double> K_Plus(K_normal.cols());
417 auto const [bhe_idx, first_BHE_top_index, second_BHE_top_index] =
420 auto first_BHE_top_index_pair = first_BHE_top_index;
421 auto second_BHE_top_index_pair = second_BHE_top_index;
423 K_Plus.insert(first_BHE_top_index_pair) =
425 K_Plus.insert(second_BHE_top_index_pair) =
428 K_normal.row(n_original_rows + n_BHE_bottom_pairs + i) = K_Plus;
431 double const T_out = (*x[0])[second_BHE_top_index_pair];
433 auto calculate_delta_T = [&](
auto& bhe)
435 auto const T_in = bhe.updateFlowRateAndTemperature(T_out, t);
438 auto delta_T = std::visit(calculate_delta_T,
441 b_Plus.insert(n_original_rows + n_BHE_bottom_pairs + i) =
445 M.getRawMatrix() = M_normal;
446 K.getRawMatrix() = K_normal;
447 b.getRawVector() = b_Plus;
450 "The Algebraic Boundary Condition is not implemented for use with "
451 "PETsc Library! Simulation will be terminated.");
456 std::vector<std::vector<MeshLib::Node*>>
const& all_bhe_nodes)
458 const int process_id = 0;
464 for (std::size_t bhe_i = 0; bhe_i < n_BHEs; bhe_i++)
466 auto const& bhe_nodes = all_bhe_nodes[bhe_i];
470 const int variable_id = bhe_i + 1;
472 std::vector<MeshLib::Node*> bhe_boundary_nodes;
476 for (
auto const& bhe_node : bhe_nodes)
479 auto const& connected_elements =
481 const std::size_t n_line_elements = std::count_if(
482 connected_elements.begin(), connected_elements.end(),
484 { return (elem->getDimension() == 1); });
486 if (n_line_elements == 1)
488 bhe_boundary_nodes.push_back(bhe_node);
492 if (bhe_boundary_nodes.size() != 2)
495 "Error!!! The BHE boundary nodes are not correctly found, "
496 "for every single BHE, there should be 2 boundary nodes.");
511 if ((*bhe_boundary_nodes[0])[2] == (*bhe_boundary_nodes[1])[2])
514 "For 1P-type BHE, the BHE inflow and outflow "
515 "nodes are identified according to their mesh node id in "
523 if ((*bhe_boundary_nodes[0])[2] < (*bhe_boundary_nodes[1])[2])
525 std::swap(bhe_boundary_nodes[0], bhe_boundary_nodes[1]);
529 auto get_global_index =
530 [&](std::size_t
const node_id,
int const component)
534 variable_id, component);
537 auto get_global_bhe_bc_indices =
539 std::pair<std::size_t ,
int >, 2>
540 nodes_and_components)
542 return std::make_pair(
543 get_global_index(nodes_and_components[0].first,
544 nodes_and_components[0].second),
545 get_global_index(nodes_and_components[1].first,
546 nodes_and_components[1].second));
549 auto get_global_bhe_bc_indices_with_bhe_idx =
550 [&](std::size_t bhe_idx,
552 std::pair<std::size_t ,
int >, 2>
553 nodes_and_components)
555 return std::make_tuple(
557 get_global_index(nodes_and_components[0].first,
558 nodes_and_components[0].second),
559 get_global_index(nodes_and_components[1].first,
560 nodes_and_components[1].second));
564 [&, bc_top_node_id = bhe_boundary_nodes[0]->getID(),
565 bc_bottom_node_id = bhe_boundary_nodes[1]->getID()](
auto& bhe)
567 for (
auto const& in_out_component_id :
568 bhe.inflow_outflow_bc_component_ids)
570 if (bhe.use_python_bcs ||
571 this->_process_data._use_server_communication)
578 bcs.addBoundaryCondition(
580 get_global_bhe_bc_indices(
581 bhe.getBHEInflowDirichletBCNodesAndComponents(
582 bc_top_node_id, bc_bottom_node_id,
583 in_out_component_id.first)),
590 "The Python Boundary Condition was switched on, "
591 "but the data object does not exist! ");
603 get_global_bhe_bc_indices_with_bhe_idx(
605 {{{bc_top_node_id, in_out_component_id.first},
607 in_out_component_id.second}}}));
612 bcs.addBoundaryCondition(
614 get_global_bhe_bc_indices(
615 bhe.getBHEInflowDirichletBCNodesAndComponents(
616 bc_top_node_id, bc_bottom_node_id,
617 in_out_component_id.first)),
618 [&bhe](
double const T,
double const t) {
619 return bhe.updateFlowRateAndTemperature(T,
625 auto const bottom_nodes_and_components =
626 bhe.getBHEBottomDirichletBCNodesAndComponents(
628 in_out_component_id.first,
629 in_out_component_id.second);
631 if (bottom_nodes_and_components &&
637 bcs.addBoundaryCondition(
639 get_global_bhe_bc_indices(
640 {{{bc_bottom_node_id,
641 in_out_component_id.first},
643 in_out_component_id.second}}})));
645 else if (bottom_nodes_and_components &&
652 get_global_bhe_bc_indices_with_bhe_idx(
654 {{{bc_bottom_node_id, in_out_component_id.first},
656 in_out_component_id.second}}}));
void INFO(fmt::format_string< Args... > fmt, Args &&... args)
void DBUG(fmt::format_string< Args... > fmt, Args &&... args)
Global vector based on Eigen vector.
bool isAxiallySymmetric() const
std::vector< Node * > const & getNodes() const
Get the nodes-vector for the mesh.
std::vector< Element * > const & getElements() const
Get the element-vector for the mesh.
unsigned getDimension() const
Returns the dimension of the mesh (determined by the maximum dimension over all elements).
std::size_t getID() const
Get id of the mesh.
std::vector< Element const * > const & getElementsConnectedToNode(std::size_t node_id) const
std::tuple< double, std::vector< double >, std::vector< double >, std::vector< int >, std::vector< double > > dataframe_network
bool isOverriddenTespy() const
virtual std::tuple< bool, bool, std::vector< double >, std::vector< double > > tespySolver(double, std::vector< double > const &, std::vector< double > const &) const
virtual void serverCommunicationPostTimestep(double, double, std::vector< double > const &, std::vector< double > const &, std::vector< double > const &) const
virtual std::tuple< std::vector< double >, std::vector< double > > serverCommunicationPreTimestep(double, double, std::vector< double > const &, std::vector< double > const &, std::vector< double > const &) const
bool isOverriddenServerCommunicationPostTimestep() const
bool isOverriddenServerCommunicationPreTimestep() const
std::unique_ptr< MeshLib::MeshSubset const > _mesh_subset_soil_nodes
const BHEMeshData _bheMeshData
void assembleConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b) override
std::vector< std::unique_ptr< MeshLib::MeshSubset const > > _mesh_subset_BHE_nodes
std::vector< std::tuple< std::size_t, GlobalIndexType, GlobalIndexType > > _vec_bottom_BHE_node_indices
void computeSecondaryVariableConcrete(double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id) override
std::vector< std::unique_ptr< HeatTransportBHELocalAssemblerInterface > > _local_assemblers
HeatTransportBHEProcess(std::string name, MeshLib::Mesh &mesh, std::unique_ptr< ProcessLib::AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase > > const ¶meters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable > > > &&process_variables, HeatTransportBHEProcessData &&process_data, SecondaryVariableCollection &&secondary_variables, BHEMeshData &&bhe_mesh_data)
HeatTransportBHEProcessData _process_data
NumLib::IterationResult postIterationConcreteProcess(GlobalVector const &x) override
void preTimestepConcreteProcess(std::vector< GlobalVector * > const &x, const double t, const double dt, int const process_id) override
std::vector< std::tuple< std::size_t, GlobalIndexType, GlobalIndexType > > _vec_top_BHE_node_indices
void constructDofTable() override
void initializeConcreteProcess(NumLib::LocalToGlobalIndexMap const &dof_table, MeshLib::Mesh const &mesh, unsigned const integration_order) override
Process specific initialization called by initialize().
void algebraicBcConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b)
void assembleWithJacobianConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalVector &b, GlobalMatrix &Jac) override
void postTimestepConcreteProcess(std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, const double t, const double dt, int const process_id) override
void createBHEBoundaryConditionTopBottom(std::vector< std::vector< MeshLib::Node * > > const &all_bhe_nodes)
virtual void computeSecondaryVariable(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
std::vector< BoundaryConditionCollection > _boundary_conditions
std::unique_ptr< MeshLib::MeshSubset const > _mesh_subset_all_nodes
std::vector< std::size_t > const & getActiveElementIDs() const
VectorMatrixAssembler _global_assembler
std::unique_ptr< NumLib::LocalToGlobalIndexMap > _local_to_global_index_map
Handles configuration of several secondary variables from the project file.
void assemble(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix *M, GlobalMatrix *K, GlobalVector *b)
void assembleWithJacobian(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalVector *b, GlobalMatrix *Jac)
IterationResult
Status flags telling the NonlinearSolver if an iteration succeeded.
PropertyVector< int > const * materialIDs(Mesh const &mesh)
@ BY_COMPONENT
Ordering data by component type.
std::unique_ptr< BHEInflowDirichletBoundaryCondition< BHEUpdateCallback > > createBHEInflowDirichletBoundaryCondition(std::pair< GlobalIndexType, GlobalIndexType > &&in_out_global_indices, BHEUpdateCallback bhe_update_callback)
std::unique_ptr< BHEBottomDirichletBoundaryCondition > createBHEBottomDirichletBoundaryCondition(std::pair< GlobalIndexType, GlobalIndexType > &&in_out_global_indices)
void createLocalAssemblers(std::vector< MeshLib::Element * > const &mesh_elements, NumLib::LocalToGlobalIndexMap const &dof_table, std::vector< std::unique_ptr< LocalAssemblerInterface > > &local_assemblers, NumLib::IntegrationOrder const integration_order, ExtraCtorArgs &&... extra_ctor_args)
std::unique_ptr< BHEInflowPythonBoundaryCondition< BHEType > > createBHEInflowPythonBoundaryCondition(std::pair< GlobalIndexType, GlobalIndexType > &&in_out_global_indices, BHEType &bhe, BHEInflowPythonBoundaryConditionPythonSideInterface &py_bc_object)
static void executeSelectedMemberOnDereferenced(Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)
static void executeSelectedMemberDereferenced(Object &object, Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)
const double _weighting_factor
const bool _use_algebraic_bc
std::vector< std::vector< MeshLib::Node * > > BHE_nodes
std::vector< std::vector< MeshLib::Element * > > BHE_elements
std::vector< int > BHE_mat_IDs
MeshLib::PropertyVector< int > const * _mesh_prop_materialIDs
BHEInflowPythonBoundaryConditionPythonSideInterface * py_bc_object
Python object computing BC values.
std::unordered_map< int, int > _map_materialID_to_BHE_ID
std::vector< BHE::BHETypes > _vec_BHE_property
const bool _use_server_communication
AlgebraicBCSetting const _algebraic_BC_Setting