OGS
HeatTransportBHEProcess.cpp
Go to the documentation of this file.
1
12
13#include <cassert>
14
22
23namespace ProcessLib
24{
25namespace HeatTransportBHE
26{
28 std::string name,
29 MeshLib::Mesh& mesh,
30 std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
31 std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters,
32 unsigned const integration_order,
33 std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>&&
34 process_variables,
35 HeatTransportBHEProcessData&& process_data,
36 SecondaryVariableCollection&& secondary_variables)
37 : Process(std::move(name), mesh, std::move(jacobian_assembler), parameters,
38 integration_order, std::move(process_variables),
39 std::move(secondary_variables)),
40 _process_data(std::move(process_data)),
41 _bheMeshData(getBHEDataInMesh(mesh))
42{
43 if (_bheMeshData.BHE_mat_IDs.size() !=
45 {
47 "The number of the given BHE properties ({:d}) are not consistent "
48 "with the number of BHE groups in the mesh ({:d}).",
51 }
52
53 auto material_ids = MeshLib::materialIDs(mesh);
54 if (material_ids == nullptr)
55 {
56 OGS_FATAL("Not able to get material IDs! ");
57 }
58
60
61 // create a map from a material ID to a BHE ID
62 for (int i = 0; i < static_cast<int>(_bheMeshData.BHE_mat_IDs.size()); i++)
63 {
64 // fill in the map structure
66 i;
67 }
68}
69
71{
72 // Create single component dof in every of the mesh's nodes.
74 std::make_unique<MeshLib::MeshSubset>(_mesh, _mesh.getNodes());
75
76 //
77 // Soil temperature variable defined on the whole mesh.
78 //
80 std::make_unique<MeshLib::MeshSubset>(_mesh, _mesh.getNodes());
81 std::vector<MeshLib::MeshSubset> all_mesh_subsets{*_mesh_subset_soil_nodes};
82
83 std::vector<std::vector<MeshLib::Element*> const*> vec_var_elements;
84 vec_var_elements.push_back(&(_mesh.getElements()));
85
86 std::vector<int> vec_n_components{
87 1}; // one component for the soil temperature variable.
88
89 //
90 // BHE nodes with BHE type dependent number of variables.
91 //
92 int const n_BHEs = _process_data._vec_BHE_property.size();
93 assert(n_BHEs == static_cast<int>(_bheMeshData.BHE_mat_IDs.size()));
94 assert(n_BHEs == static_cast<int>(_bheMeshData.BHE_nodes.size()));
95 assert(n_BHEs == static_cast<int>(_bheMeshData.BHE_elements.size()));
96
97 // the BHE nodes need to be cherry-picked from the vector
98 for (int i = 0; i < n_BHEs; i++)
99 {
100 auto const number_of_unknowns =
101 visit([](auto const& bhe) { return bhe.number_of_unknowns; },
103 auto const& bhe_nodes = _bheMeshData.BHE_nodes[i];
104 auto const& bhe_elements = _bheMeshData.BHE_elements[i];
105
106 // All the BHE nodes have additional variables.
107 _mesh_subset_BHE_nodes.push_back(
108 std::make_unique<MeshLib::MeshSubset const>(_mesh, bhe_nodes));
109
110 std::generate_n(std::back_inserter(all_mesh_subsets),
111 // Here the number of components equals to the
112 // number of unknowns on the BHE
113 number_of_unknowns,
114 [&ms = _mesh_subset_BHE_nodes.back()]()
115 { return *ms; });
116
117 vec_n_components.push_back(number_of_unknowns);
118 vec_var_elements.push_back(&bhe_elements);
119 }
120
122 std::make_unique<NumLib::LocalToGlobalIndexMap>(
123 std::move(all_mesh_subsets),
124 vec_n_components,
125 vec_var_elements,
127
128 // in case of debugging the dof table, activate the following line
129 // std::cout << *_local_to_global_index_map << "\n";
130}
131
133 NumLib::LocalToGlobalIndexMap const& dof_table,
134 MeshLib::Mesh const& mesh,
135 unsigned const integration_order)
136{
137 // Quick access map to BHE's through element ids.
138 std::unordered_map<std::size_t, BHE::BHETypes*> element_to_bhe_map;
139 int const n_BHEs = _process_data._vec_BHE_property.size();
140 for (int i = 0; i < n_BHEs; i++)
141 {
142 auto const& bhe_elements = _bheMeshData.BHE_elements[i];
143 for (auto const& e : bhe_elements)
144 {
145 element_to_bhe_map[e->getID()] =
147 }
148 }
149
150 assert(mesh.getDimension() == 3);
153 mesh.getElements(), dof_table, _local_assemblers,
154 NumLib::IntegrationOrder{integration_order}, element_to_bhe_map,
156
157 // Create BHE boundary conditions for each of the BHEs
159}
160
162 const double t, double const dt, std::vector<GlobalVector*> const& x,
163 std::vector<GlobalVector*> const& x_prev, int const process_id,
165{
166 DBUG("Assemble HeatTransportBHE process.");
167
168 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_table = {
170 // Call global assembler for each local assembly item.
173 getActiveElementIDs(), dof_table, t, dt, x, x_prev, process_id, &M, &K,
174 &b);
175}
176
178 const double t, double const dt, std::vector<GlobalVector*> const& x,
179 std::vector<GlobalVector*> const& x_prev, int const process_id,
180 GlobalVector& b, GlobalMatrix& Jac)
181{
182 DBUG("AssembleWithJacobian HeatTransportBHE process.");
183
184 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_table = {
186
187 // Call global assembler for each local assembly item.
190 _local_assemblers, getActiveElementIDs(), dof_table, t, dt, x, x_prev,
191 process_id, &b, &Jac);
192}
193
195 double const t, double const dt, std::vector<GlobalVector*> const& x,
196 GlobalVector const& x_prev, int const process_id)
197{
198 DBUG("Compute heat flux for HeatTransportBHE process.");
199
200 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_tables;
201 dof_tables.reserve(x.size());
202 std::generate_n(std::back_inserter(dof_tables), x.size(),
203 [&]() { return _local_to_global_index_map.get(); });
204
207 _local_assemblers, getActiveElementIDs(), dof_tables, t, dt, x, x_prev,
208 process_id);
209}
210
212 GlobalVector const& x)
213{
214 // if the process use python boundary condition
217
218 // Here the task is to get current time flowrate and flow temperature from
219 // TESPy and determine whether it converges.
220 auto const Tout_nodes_id =
222 const std::size_t n_bc_nodes = Tout_nodes_id.size();
223
224 for (std::size_t i = 0; i < n_bc_nodes; i++)
225 {
226 // read the T_out and store them in dataframe
228 x[Tout_nodes_id[i]];
229 }
230 // Transfer Tin and Tout to TESPy and return the results
231 auto const tespy_result = _process_data.py_bc_object->tespySolver(
233 std::get<1>(_process_data.py_bc_object->dataframe_network), // T_in
234 std::get<2>(_process_data.py_bc_object->dataframe_network)); // T_out
236 {
237 DBUG("Method `tespySolver' not overridden in Python script.");
238 }
239
240 // update the Tin and flow rate
241 for (std::size_t i = 0; i < n_bc_nodes; i++)
242 {
244 std::get<2>(tespy_result)[i];
246 std::get<3>(tespy_result)[i];
247 }
248 auto const tespy_has_converged = std::get<1>(tespy_result);
249 if (tespy_has_converged == true)
251
253}
254
256 std::vector<GlobalVector*> const& x, const double t, const double dt,
257 int const process_id)
258{
259 if (_process_data.py_bc_object == nullptr ||
261 {
262 return;
263 }
264
265 auto& [time, Tin_value, Tout_value, Tout_nodes_ids, flowrate] =
267
268 // We found the problem that time != t, but it always equals the last
269 // step. The following line is to correct this, although we do not use
270 // it for server communication.
271 time = t;
272
273 auto const& solution = *x[process_id];
274
275 // Iterate through each BHE
276 const std::size_t n_bc_nodes = Tout_nodes_ids.size();
277 for (std::size_t i = 0; i < n_bc_nodes; i++)
278 {
279 // read the T_out and store them in dataframe
280 Tout_value[i] = solution[Tout_nodes_ids[i]];
281 }
282
283 // Transfer T_out to server_Communication and get back T_in and flowrate
284 auto const server_communication_result =
286 t, dt, Tin_value, Tout_value, flowrate);
289 {
290 DBUG("Method `serverCommunication' not overridden in Python script.");
291 }
292
293 auto const& [server_communication_Tin_value,
294 server_communication_flowrate] = server_communication_result;
295
296 std::copy(begin(server_communication_Tin_value),
297 end(server_communication_Tin_value),
298 begin(Tin_value));
299 std::copy(begin(server_communication_flowrate),
300 end(server_communication_flowrate),
301 begin(flowrate));
302}
303
305 std::vector<GlobalVector*> const& x,
306 std::vector<GlobalVector*> const& /*x_prev*/, const double t,
307 const double dt, int const process_id)
308{
309 if (_process_data.py_bc_object == nullptr ||
311 {
312 return;
313 }
314
315 auto& [time, Tin_value, Tout_value, Tout_nodes_ids, flowrate] =
317
318 // We found the problem that time != t, but it always equals the last
319 // step. The following line is to correct this, although we do not use
320 // it for server communication.
321 time = t;
322
323 auto const& solution = *x[process_id];
324
325 // Iterate through each BHE
326 const std::size_t n_bc_nodes = Tout_nodes_ids.size();
327 for (std::size_t i = 0; i < n_bc_nodes; i++)
328 {
329 // read the T_out and store them in dataframe
330 Tout_value[i] = solution[Tout_nodes_ids[i]];
331 }
332
333 // Transfer T_out to server_Communication
335 t, dt, Tin_value, Tout_value, flowrate);
338 {
339 DBUG("Method `serverCommunication' not overridden in Python script.");
340 }
341}
342
344 std::vector<std::vector<MeshLib::Node*>> const& all_bhe_nodes)
345{
346 const int process_id = 0;
347 auto& bcs = _boundary_conditions[process_id];
348
349 int const n_BHEs = static_cast<int>(_process_data._vec_BHE_property.size());
350
351 // for each BHE
352 for (int bhe_i = 0; bhe_i < n_BHEs; bhe_i++)
353 {
354 auto const& bhe_nodes = all_bhe_nodes[bhe_i];
355 // find the variable ID
356 // the soil temperature is 0-th variable
357 // the BHE temperature is therefore bhe_i + 1
358 const int variable_id = bhe_i + 1;
359
360 std::vector<MeshLib::Node*> bhe_boundary_nodes;
361
362 // cherry-pick the boundary nodes according to
363 // the number of connected line elements.
364 for (auto const& bhe_node : bhe_nodes)
365 {
366 // Count number of 1d elements connected with every BHE node.
367 auto const& connected_elements =
369 const std::size_t n_line_elements = std::count_if(
370 connected_elements.begin(), connected_elements.end(),
371 [](MeshLib::Element const* elem)
372 { return (elem->getDimension() == 1); });
373
374 if (n_line_elements == 1)
375 {
376 bhe_boundary_nodes.push_back(bhe_node);
377 }
378 }
379
380 if (bhe_boundary_nodes.size() != 2)
381 {
382 OGS_FATAL(
383 "Error!!! The BHE boundary nodes are not correctly found, "
384 "for every single BHE, there should be 2 boundary nodes.");
385 }
386
387 // For 1U, 2U, CXC, CXA type BHE, the node order in the boundary nodes
388 // vector should be rearranged according to its z coordinate in
389 // descending order. In these BHE types, the z coordinate on the top and
390 // bottom node is different. The BHE top node with a higher z coordinate
391 // should be placed at the first, while the BHE bottom node with a lower
392 // z coordinate should be placed at the second. For other horizontal BHE
393 // types e.g. 1P-type BHE, the z coordinate on the top and bottom node
394 // is identical. Thus the node order in the boundary nodes vector can
395 // not be rearranged according to its z coordinate. For these BHE types,
396 // the boundary node order is according to the default node id order in
397 // the model mesh.
398 // for 1P-type BHE
399 if ((*bhe_boundary_nodes[0])[2] == (*bhe_boundary_nodes[1])[2])
400 {
401 INFO(
402 "For 1P-type BHE, the BHE inflow and outflow "
403 "nodes are identified according to their mesh node id in "
404 "ascending order");
405 }
406 // for 1U, 2U, CXC, CXA type BHE
407 else
408 {
409 // swap the boundary nodes if the z coordinate of the
410 // first node is lower than it on the second node
411 if ((*bhe_boundary_nodes[0])[2] < (*bhe_boundary_nodes[1])[2])
412 {
413 std::swap(bhe_boundary_nodes[0], bhe_boundary_nodes[1]);
414 }
415 }
416
417 auto get_global_index =
418 [&](std::size_t const node_id, int const component)
419 {
420 return _local_to_global_index_map->getGlobalIndex(
422 variable_id, component);
423 };
424
425 auto get_global_bhe_bc_indices =
426 [&](std::array<
427 std::pair<std::size_t /*node_id*/, int /*component*/>, 2>
428 nodes_and_components)
429 {
430 return std::make_pair(
431 get_global_index(nodes_and_components[0].first,
432 nodes_and_components[0].second),
433 get_global_index(nodes_and_components[1].first,
434 nodes_and_components[1].second));
435 };
436
437 auto createBCs =
438 [&, bc_top_node_id = bhe_boundary_nodes[0]->getID(),
439 bc_bottom_node_id = bhe_boundary_nodes[1]->getID()](auto& bhe)
440 {
441 for (auto const& in_out_component_id :
442 bhe.inflow_outflow_bc_component_ids)
443 {
444 if (bhe.use_python_bcs ||
446 // call BHEPythonBoundarycondition
447 {
448 if (_process_data.py_bc_object) // the bc object exist
449 {
450 // apply the customized top, inflow BC.
451 bcs.addBoundaryCondition(
453 get_global_bhe_bc_indices(
454 bhe.getBHEInflowDirichletBCNodesAndComponents(
455 bc_top_node_id, bc_bottom_node_id,
456 in_out_component_id.first)),
457 bhe,
459 }
460 else
461 {
462 OGS_FATAL(
463 "The Python Boundary Condition was switched on, "
464 "but the data object does not exist! ");
465 }
466 }
467 else
468 {
469 // Top, inflow, normal case
470 bcs.addBoundaryCondition(
472 get_global_bhe_bc_indices(
473 bhe.getBHEInflowDirichletBCNodesAndComponents(
474 bc_top_node_id, bc_bottom_node_id,
475 in_out_component_id.first)),
476 [&bhe](double const T, double const t) {
477 return bhe.updateFlowRateAndTemperature(T, t);
478 }));
479 }
480
481 auto const bottom_nodes_and_components =
482 bhe.getBHEBottomDirichletBCNodesAndComponents(
483 bc_bottom_node_id,
484 in_out_component_id.first,
485 in_out_component_id.second);
486
487 if (bottom_nodes_and_components)
488 {
489 // Bottom, outflow, all cases
490 bcs.addBoundaryCondition(
492 get_global_bhe_bc_indices(
493 {{{bc_bottom_node_id,
494 in_out_component_id.first},
495 {bc_bottom_node_id,
496 in_out_component_id.second}}})));
497 }
498 }
499 };
500 visit(createBCs, _process_data._vec_BHE_property[bhe_i]);
501 }
502}
503} // namespace HeatTransportBHE
504} // namespace ProcessLib
#define OGS_FATAL(...)
Definition Error.h:26
void INFO(fmt::format_string< Args... > fmt, Args &&... args)
Definition Logging.h:35
void DBUG(fmt::format_string< Args... > fmt, Args &&... args)
Definition Logging.h:30
Global vector based on Eigen vector.
Definition EigenVector.h:25
bool isAxiallySymmetric() const
Definition Mesh.h:137
std::vector< Node * > const & getNodes() const
Get the nodes-vector for the mesh.
Definition Mesh.h:106
std::vector< Element * > const & getElements() const
Get the element-vector for the mesh.
Definition Mesh.h:109
unsigned getDimension() const
Returns the dimension of the mesh (determined by the maximum dimension over all elements).
Definition Mesh.h:88
std::size_t getID() const
Get id of the mesh.
Definition Mesh.h:121
std::vector< Element const * > const & getElementsConnectedToNode(std::size_t node_id) const
Definition Mesh.cpp:256
std::tuple< double, std::vector< double >, std::vector< double >, std::vector< int >, std::vector< double > > dataframe_network
virtual std::tuple< bool, bool, std::vector< double >, std::vector< double > > tespySolver(double, std::vector< double > const &, std::vector< double > const &) const
virtual void serverCommunicationPostTimestep(double, double, std::vector< double > const &, std::vector< double > const &, std::vector< double > const &) const
virtual std::tuple< std::vector< double >, std::vector< double > > serverCommunicationPreTimestep(double, double, std::vector< double > const &, std::vector< double > const &, std::vector< double > const &) const
std::unique_ptr< MeshLib::MeshSubset const > _mesh_subset_soil_nodes
void assembleConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b) override
std::vector< std::unique_ptr< MeshLib::MeshSubset const > > _mesh_subset_BHE_nodes
void computeSecondaryVariableConcrete(double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id) override
std::vector< std::unique_ptr< HeatTransportBHELocalAssemblerInterface > > _local_assemblers
NumLib::IterationResult postIterationConcreteProcess(GlobalVector const &x) override
HeatTransportBHEProcess(std::string name, MeshLib::Mesh &mesh, std::unique_ptr< ProcessLib::AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase > > const &parameters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable > > > &&process_variables, HeatTransportBHEProcessData &&process_data, SecondaryVariableCollection &&secondary_variables)
void preTimestepConcreteProcess(std::vector< GlobalVector * > const &x, const double t, const double dt, int const process_id) override
void initializeConcreteProcess(NumLib::LocalToGlobalIndexMap const &dof_table, MeshLib::Mesh const &mesh, unsigned const integration_order) override
Process specific initialization called by initialize().
void assembleWithJacobianConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalVector &b, GlobalMatrix &Jac) override
void postTimestepConcreteProcess(std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, const double t, const double dt, int const process_id) override
void createBHEBoundaryConditionTopBottom(std::vector< std::vector< MeshLib::Node * > > const &all_bhe_nodes)
virtual void computeSecondaryVariable(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
std::vector< BoundaryConditionCollection > _boundary_conditions
Definition Process.h:396
std::unique_ptr< MeshLib::MeshSubset const > _mesh_subset_all_nodes
Definition Process.h:357
MeshLib::Mesh & _mesh
Definition Process.h:356
std::vector< std::size_t > const & getActiveElementIDs() const
Definition Process.h:160
VectorMatrixAssembler _global_assembler
Definition Process.h:368
std::unique_ptr< NumLib::LocalToGlobalIndexMap > _local_to_global_index_map
Definition Process.h:359
Handles configuration of several secondary variables from the project file.
void assemble(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix *M, GlobalMatrix *K, GlobalVector *b)
void assembleWithJacobian(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalVector *b, GlobalMatrix *Jac)
IterationResult
Status flags telling the NonlinearSolver if an iteration succeeded.
PropertyVector< int > const * materialIDs(Mesh const &mesh)
Definition Mesh.cpp:268
@ BY_COMPONENT
Ordering data by component type.
std::unique_ptr< BHEInflowDirichletBoundaryCondition< BHEUpdateCallback > > createBHEInflowDirichletBoundaryCondition(std::pair< GlobalIndexType, GlobalIndexType > &&in_out_global_indices, BHEUpdateCallback bhe_update_callback)
std::unique_ptr< BHEBottomDirichletBoundaryCondition > createBHEBottomDirichletBoundaryCondition(std::pair< GlobalIndexType, GlobalIndexType > &&in_out_global_indices)
void createLocalAssemblers(std::vector< MeshLib::Element * > const &mesh_elements, NumLib::LocalToGlobalIndexMap const &dof_table, std::vector< std::unique_ptr< LocalAssemblerInterface > > &local_assemblers, NumLib::IntegrationOrder const integration_order, ExtraCtorArgs &&... extra_ctor_args)
BHEMeshData getBHEDataInMesh(MeshLib::Mesh const &mesh)
Definition MeshUtils.cpp:51
std::unique_ptr< BHEInflowPythonBoundaryCondition< BHEType > > createBHEInflowPythonBoundaryCondition(std::pair< GlobalIndexType, GlobalIndexType > &&in_out_global_indices, BHEType &bhe, BHEInflowPythonBoundaryConditionPythonSideInterface &py_bc_object)
static void executeSelectedMemberOnDereferenced(Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)
static void executeSelectedMemberDereferenced(Object &object, Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)
std::vector< std::vector< MeshLib::Node * > > BHE_nodes
Definition MeshUtils.h:38
std::vector< std::vector< MeshLib::Element * > > BHE_elements
Definition MeshUtils.h:37
BHEInflowPythonBoundaryConditionPythonSideInterface * py_bc_object
Python object computing BC values.