25namespace HeatTransportBHE
30 std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
31 std::vector<std::unique_ptr<ParameterLib::ParameterBase>>
const& parameters,
32 unsigned const integration_order,
33 std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>&&
37 :
Process(std::move(name), mesh, std::move(jacobian_assembler), parameters,
38 integration_order, std::move(process_variables),
39 std::move(secondary_variables)),
40 _process_data(std::move(process_data)),
47 "The number of the given BHE properties ({:d}) are not consistent "
48 "with the number of BHE groups in the mesh ({:d}).",
54 if (material_ids ==
nullptr)
56 OGS_FATAL(
"Not able to get material IDs! ");
83 std::vector<std::vector<MeshLib::Element*>
const*> vec_var_elements;
86 std::vector<int> vec_n_components{
98 for (
int i = 0; i < n_BHEs; i++)
100 auto const number_of_unknowns =
101 visit([](
auto const& bhe) {
return bhe.number_of_unknowns; },
108 std::make_unique<MeshLib::MeshSubset const>(
_mesh, bhe_nodes));
110 std::generate_n(std::back_inserter(all_mesh_subsets),
117 vec_n_components.push_back(number_of_unknowns);
118 vec_var_elements.push_back(&bhe_elements);
122 std::make_unique<NumLib::LocalToGlobalIndexMap>(
123 std::move(all_mesh_subsets),
135 unsigned const integration_order)
138 std::unordered_map<std::size_t, BHE::BHETypes*> element_to_bhe_map;
140 for (
int i = 0; i < n_BHEs; i++)
143 for (
auto const& e : bhe_elements)
145 element_to_bhe_map[e->getID()] =
162 const double t,
double const dt, std::vector<GlobalVector*>
const& x,
163 std::vector<GlobalVector*>
const& x_prev,
int const process_id,
166 DBUG(
"Assemble HeatTransportBHE process.");
168 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_table = {
185 const double t,
double const dt, std::vector<GlobalVector*>
const& x,
186 std::vector<GlobalVector*>
const& x_prev,
int const process_id,
189 DBUG(
"AssembleWithJacobian HeatTransportBHE process.");
191 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_table = {
198 process_id, &b, &Jac);
202 double const t,
double const dt, std::vector<GlobalVector*>
const& x,
205 DBUG(
"Compute heat flux for HeatTransportBHE process.");
207 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_tables;
208 dof_tables.reserve(x.size());
209 std::generate_n(std::back_inserter(dof_tables), x.size(),
210 [&]() { return _local_to_global_index_map.get(); });
227 auto const Tout_nodes_id =
229 const std::size_t n_bc_nodes = Tout_nodes_id.size();
231 for (std::size_t i = 0; i < n_bc_nodes; i++)
244 DBUG(
"Method `tespySolver' not overridden in Python script.");
248 for (std::size_t i = 0; i < n_bc_nodes; i++)
251 std::get<2>(tespy_result)[i];
253 std::get<3>(tespy_result)[i];
255 auto const tespy_has_converged = std::get<1>(tespy_result);
256 if (tespy_has_converged ==
true)
263 std::vector<GlobalVector*>
const& x,
const double t,
const double dt,
264 int const process_id)
272 auto& [time, Tin_value, Tout_value, Tout_nodes_ids, flowrate] =
280 auto const& solution = *x[process_id];
283 const std::size_t n_bc_nodes = Tout_nodes_ids.size();
284 for (std::size_t i = 0; i < n_bc_nodes; i++)
287 Tout_value[i] = solution[Tout_nodes_ids[i]];
291 auto const server_communication_result =
293 t, dt, Tin_value, Tout_value, flowrate);
297 DBUG(
"Method `serverCommunication' not overridden in Python script.");
300 auto const& [server_communication_Tin_value,
301 server_communication_flowrate] = server_communication_result;
303 std::copy(begin(server_communication_Tin_value),
304 end(server_communication_Tin_value),
306 std::copy(begin(server_communication_flowrate),
307 end(server_communication_flowrate),
312 std::vector<GlobalVector*>
const& x,
313 std::vector<GlobalVector*>
const& ,
const double t,
314 const double dt,
int const process_id)
322 auto& [time, Tin_value, Tout_value, Tout_nodes_ids, flowrate] =
330 auto const& solution = *x[process_id];
333 const std::size_t n_bc_nodes = Tout_nodes_ids.size();
334 for (std::size_t i = 0; i < n_bc_nodes; i++)
337 Tout_value[i] = solution[Tout_nodes_ids[i]];
342 t, dt, Tin_value, Tout_value, flowrate);
346 DBUG(
"Method `serverCommunication' not overridden in Python script.");
351 [[maybe_unused]]
const double t,
double const ,
352 [[maybe_unused]] std::vector<GlobalVector*>
const& x,
353 std::vector<GlobalVector*>
const& ,
int const ,
358 auto M_normal = M.getRawMatrix();
359 auto K_normal = K.getRawMatrix();
360 auto n_original_rows = K_normal.rows();
368 (Eigen::RowVectorXd::Ones(K_normal.rows()) * K_normal.cwiseAbs())
371 M_normal.conservativeResize(
372 M_normal.rows() + n_BHE_bottom_pairs + n_BHE_top_pairs,
374 K_normal.conservativeResize(
375 K_normal.rows() + n_BHE_bottom_pairs + n_BHE_top_pairs,
378 for (std::size_t i = 0; i < n_BHE_bottom_pairs; i++)
380 Eigen::SparseVector<double> M_Plus(M_normal.cols());
382 M_normal.row(n_original_rows + i) = M_Plus;
384 Eigen::SparseVector<double> K_Plus(K_normal.cols());
387 auto const [bhe_idx, first_BHE_bottom_index, second_BHE_bottom_index] =
390 K_Plus.insert(first_BHE_bottom_index) = w_val;
391 K_Plus.insert(second_BHE_bottom_index) = -w_val;
393 K_normal.row(n_original_rows + i) = K_Plus;
396 auto b_normal = b.getRawVector();
397 Eigen::SparseVector<double> b_Plus(b_normal.rows() + n_BHE_bottom_pairs +
402 for (
int i = 0; i < b_normal.innerSize(); ++i)
404 b_Plus.insert(i) = b_normal.coeff(i);
407 for (std::size_t i = 0; i < n_BHE_top_pairs; i++)
409 Eigen::SparseVector<double> M_Plus(M_normal.cols());
411 M_normal.row(n_original_rows + n_BHE_bottom_pairs + i) = M_Plus;
413 Eigen::SparseVector<double> K_Plus(K_normal.cols());
416 auto const [bhe_idx, first_BHE_top_index, second_BHE_top_index] =
419 auto first_BHE_top_index_pair = first_BHE_top_index;
420 auto second_BHE_top_index_pair = second_BHE_top_index;
422 K_Plus.insert(first_BHE_top_index_pair) =
424 K_Plus.insert(second_BHE_top_index_pair) =
427 K_normal.row(n_original_rows + n_BHE_bottom_pairs + i) = K_Plus;
430 double const T_out = (*x[0])[second_BHE_top_index_pair];
432 auto calculate_delta_T = [&](
auto& bhe)
434 auto const T_in = bhe.updateFlowRateAndTemperature(T_out, t);
437 auto delta_T = std::visit(calculate_delta_T,
440 b_Plus.insert(n_original_rows + n_BHE_bottom_pairs + i) =
444 M.getRawMatrix() = M_normal;
445 K.getRawMatrix() = K_normal;
446 b.getRawVector() = b_Plus;
449 "The Algebraic Boundary Condition is not implemented for use with "
450 "PETsc Library! Simulation will be terminated.");
455 std::vector<std::vector<MeshLib::Node*>>
const& all_bhe_nodes)
457 const int process_id = 0;
463 for (std::size_t bhe_i = 0; bhe_i < n_BHEs; bhe_i++)
465 auto const& bhe_nodes = all_bhe_nodes[bhe_i];
469 const int variable_id = bhe_i + 1;
471 std::vector<MeshLib::Node*> bhe_boundary_nodes;
475 for (
auto const& bhe_node : bhe_nodes)
478 auto const& connected_elements =
480 const std::size_t n_line_elements = std::count_if(
481 connected_elements.begin(), connected_elements.end(),
483 { return (elem->getDimension() == 1); });
485 if (n_line_elements == 1)
487 bhe_boundary_nodes.push_back(bhe_node);
491 if (bhe_boundary_nodes.size() != 2)
494 "Error!!! The BHE boundary nodes are not correctly found, "
495 "for every single BHE, there should be 2 boundary nodes.");
510 if ((*bhe_boundary_nodes[0])[2] == (*bhe_boundary_nodes[1])[2])
513 "For 1P-type BHE, the BHE inflow and outflow "
514 "nodes are identified according to their mesh node id in "
522 if ((*bhe_boundary_nodes[0])[2] < (*bhe_boundary_nodes[1])[2])
524 std::swap(bhe_boundary_nodes[0], bhe_boundary_nodes[1]);
528 auto get_global_index =
529 [&](std::size_t
const node_id,
int const component)
533 variable_id, component);
536 auto get_global_bhe_bc_indices =
538 std::pair<std::size_t ,
int >, 2>
539 nodes_and_components)
541 return std::make_pair(
542 get_global_index(nodes_and_components[0].first,
543 nodes_and_components[0].second),
544 get_global_index(nodes_and_components[1].first,
545 nodes_and_components[1].second));
548 auto get_global_bhe_bc_indices_with_bhe_idx =
549 [&](std::size_t bhe_idx,
551 std::pair<std::size_t ,
int >, 2>
552 nodes_and_components)
554 return std::make_tuple(
556 get_global_index(nodes_and_components[0].first,
557 nodes_and_components[0].second),
558 get_global_index(nodes_and_components[1].first,
559 nodes_and_components[1].second));
563 [&, bc_top_node_id = bhe_boundary_nodes[0]->getID(),
564 bc_bottom_node_id = bhe_boundary_nodes[1]->getID()](
auto& bhe)
566 for (
auto const& in_out_component_id :
567 bhe.inflow_outflow_bc_component_ids)
569 if (bhe.use_python_bcs ||
570 this->_process_data._use_server_communication)
577 bcs.addBoundaryCondition(
579 get_global_bhe_bc_indices(
580 bhe.getBHEInflowDirichletBCNodesAndComponents(
581 bc_top_node_id, bc_bottom_node_id,
582 in_out_component_id.first)),
589 "The Python Boundary Condition was switched on, "
590 "but the data object does not exist! ");
602 get_global_bhe_bc_indices_with_bhe_idx(
604 {{{bc_top_node_id, in_out_component_id.first},
606 in_out_component_id.second}}}));
611 bcs.addBoundaryCondition(
613 get_global_bhe_bc_indices(
614 bhe.getBHEInflowDirichletBCNodesAndComponents(
615 bc_top_node_id, bc_bottom_node_id,
616 in_out_component_id.first)),
617 [&bhe](
double const T,
double const t) {
618 return bhe.updateFlowRateAndTemperature(T,
624 auto const bottom_nodes_and_components =
625 bhe.getBHEBottomDirichletBCNodesAndComponents(
627 in_out_component_id.first,
628 in_out_component_id.second);
630 if (bottom_nodes_and_components &&
636 bcs.addBoundaryCondition(
638 get_global_bhe_bc_indices(
639 {{{bc_bottom_node_id,
640 in_out_component_id.first},
642 in_out_component_id.second}}})));
644 else if (bottom_nodes_and_components &&
651 get_global_bhe_bc_indices_with_bhe_idx(
653 {{{bc_bottom_node_id, in_out_component_id.first},
655 in_out_component_id.second}}}));
void INFO(fmt::format_string< Args... > fmt, Args &&... args)
void DBUG(fmt::format_string< Args... > fmt, Args &&... args)
Global vector based on Eigen vector.
bool isAxiallySymmetric() const
std::vector< Node * > const & getNodes() const
Get the nodes-vector for the mesh.
std::vector< Element * > const & getElements() const
Get the element-vector for the mesh.
unsigned getDimension() const
Returns the dimension of the mesh (determined by the maximum dimension over all elements).
std::size_t getID() const
Get id of the mesh.
std::vector< Element const * > const & getElementsConnectedToNode(std::size_t node_id) const
std::tuple< double, std::vector< double >, std::vector< double >, std::vector< int >, std::vector< double > > dataframe_network
bool isOverriddenTespy() const
virtual std::tuple< bool, bool, std::vector< double >, std::vector< double > > tespySolver(double, std::vector< double > const &, std::vector< double > const &) const
virtual void serverCommunicationPostTimestep(double, double, std::vector< double > const &, std::vector< double > const &, std::vector< double > const &) const
virtual std::tuple< std::vector< double >, std::vector< double > > serverCommunicationPreTimestep(double, double, std::vector< double > const &, std::vector< double > const &, std::vector< double > const &) const
bool isOverriddenServerCommunicationPostTimestep() const
bool isOverriddenServerCommunicationPreTimestep() const
std::unique_ptr< MeshLib::MeshSubset const > _mesh_subset_soil_nodes
const BHEMeshData _bheMeshData
void assembleConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b) override
std::vector< std::unique_ptr< MeshLib::MeshSubset const > > _mesh_subset_BHE_nodes
std::vector< std::tuple< std::size_t, GlobalIndexType, GlobalIndexType > > _vec_bottom_BHE_node_indices
void computeSecondaryVariableConcrete(double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id) override
std::vector< std::unique_ptr< HeatTransportBHELocalAssemblerInterface > > _local_assemblers
HeatTransportBHEProcessData _process_data
NumLib::IterationResult postIterationConcreteProcess(GlobalVector const &x) override
HeatTransportBHEProcess(std::string name, MeshLib::Mesh &mesh, std::unique_ptr< ProcessLib::AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase > > const ¶meters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable > > > &&process_variables, HeatTransportBHEProcessData &&process_data, SecondaryVariableCollection &&secondary_variables)
void preTimestepConcreteProcess(std::vector< GlobalVector * > const &x, const double t, const double dt, int const process_id) override
std::vector< std::tuple< std::size_t, GlobalIndexType, GlobalIndexType > > _vec_top_BHE_node_indices
void constructDofTable() override
void initializeConcreteProcess(NumLib::LocalToGlobalIndexMap const &dof_table, MeshLib::Mesh const &mesh, unsigned const integration_order) override
Process specific initialization called by initialize().
void algebraicBcConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b)
void assembleWithJacobianConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalVector &b, GlobalMatrix &Jac) override
void postTimestepConcreteProcess(std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, const double t, const double dt, int const process_id) override
void createBHEBoundaryConditionTopBottom(std::vector< std::vector< MeshLib::Node * > > const &all_bhe_nodes)
virtual void computeSecondaryVariable(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
std::vector< BoundaryConditionCollection > _boundary_conditions
std::unique_ptr< MeshLib::MeshSubset const > _mesh_subset_all_nodes
std::vector< std::size_t > const & getActiveElementIDs() const
VectorMatrixAssembler _global_assembler
std::unique_ptr< NumLib::LocalToGlobalIndexMap > _local_to_global_index_map
Handles configuration of several secondary variables from the project file.
void assemble(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix *M, GlobalMatrix *K, GlobalVector *b)
void assembleWithJacobian(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalVector *b, GlobalMatrix *Jac)
IterationResult
Status flags telling the NonlinearSolver if an iteration succeeded.
PropertyVector< int > const * materialIDs(Mesh const &mesh)
@ BY_COMPONENT
Ordering data by component type.
std::unique_ptr< BHEInflowDirichletBoundaryCondition< BHEUpdateCallback > > createBHEInflowDirichletBoundaryCondition(std::pair< GlobalIndexType, GlobalIndexType > &&in_out_global_indices, BHEUpdateCallback bhe_update_callback)
std::unique_ptr< BHEBottomDirichletBoundaryCondition > createBHEBottomDirichletBoundaryCondition(std::pair< GlobalIndexType, GlobalIndexType > &&in_out_global_indices)
void createLocalAssemblers(std::vector< MeshLib::Element * > const &mesh_elements, NumLib::LocalToGlobalIndexMap const &dof_table, std::vector< std::unique_ptr< LocalAssemblerInterface > > &local_assemblers, NumLib::IntegrationOrder const integration_order, ExtraCtorArgs &&... extra_ctor_args)
BHEMeshData getBHEDataInMesh(MeshLib::Mesh const &mesh)
std::unique_ptr< BHEInflowPythonBoundaryCondition< BHEType > > createBHEInflowPythonBoundaryCondition(std::pair< GlobalIndexType, GlobalIndexType > &&in_out_global_indices, BHEType &bhe, BHEInflowPythonBoundaryConditionPythonSideInterface &py_bc_object)
static void executeSelectedMemberOnDereferenced(Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)
static void executeSelectedMemberDereferenced(Object &object, Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)
const double _weighting_factor
const bool _use_algebraic_bc
std::vector< std::vector< MeshLib::Node * > > BHE_nodes
std::vector< std::vector< MeshLib::Element * > > BHE_elements
std::vector< int > BHE_mat_IDs
MeshLib::PropertyVector< int > const * _mesh_prop_materialIDs
BHEInflowPythonBoundaryConditionPythonSideInterface * py_bc_object
Python object computing BC values.
std::unordered_map< int, int > _map_materialID_to_BHE_ID
std::vector< BHE::BHETypes > _vec_BHE_property
const bool _use_server_communication
AlgebraicBCSetting const _algebraic_BC_Setting