OGS
LiquidFlowLocalAssembler-impl.h
Go to the documentation of this file.
1
13#pragma once
14
20
21namespace ProcessLib
22{
23namespace LiquidFlow
24{
25template <typename ShapeFunction, int GlobalDim>
27 double const t, double const dt, std::vector<double> const& local_x,
28 std::vector<double> const& /*local_x_prev*/,
29 std::vector<double>& local_M_data, std::vector<double>& local_K_data,
30 std::vector<double>& local_b_data)
31{
33 pos.setElementID(_element.getID());
34
35 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
37 vars.temperature =
39 .template value<double>(vars, pos, t, dt);
40 vars.liquid_phase_pressure = std::numeric_limits<double>::quiet_NaN();
41 GlobalDimMatrixType const permeability =
44 vars, pos, t, dt));
45 // Note: For Inclined 1D in 2D/3D or 2D element in 3D, the first item in
46 // the assert must be changed to permeability.rows() ==
47 // _element->getDimension()
48 assert(permeability.rows() == GlobalDim || permeability.rows() == 1);
49
50 if (permeability.size() == 1)
51 { // isotropic or 1D problem.
52 assembleMatrixAndVector<IsotropicCalculator>(
53 t, dt, local_x, local_M_data, local_K_data, local_b_data);
54 }
55 else
56 {
57 assembleMatrixAndVector<AnisotropicCalculator>(
58 t, dt, local_x, local_M_data, local_K_data, local_b_data);
59 }
60}
61
62template <typename ShapeFunction, int GlobalDim>
64 MathLib::Point3d const& p_local_coords, double const t,
65 std::vector<double> const& local_x) const
66{
67 // TODO (tf) Temporary value not used by current material models. Need
68 // extension of getFlux interface
69 double const dt = std::numeric_limits<double>::quiet_NaN();
70
71 // Note: Axial symmetry is set to false here, because we only need dNdx
72 // here, which is not affected by axial symmetry.
73 auto const shape_matrices =
75 GlobalDim>(_element,
76 false /*is_axially_symmetric*/,
77 std::array{p_local_coords})[0];
78
79 // create pos object to access the correct media property
81 pos.setElementID(_element.getID());
82
83 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
84 auto const& liquid_phase = medium.phase("AqueousLiquid");
85
87
88 double pressure = 0.0;
89 NumLib::shapeFunctionInterpolate(local_x, shape_matrices.N, pressure);
90 vars.liquid_phase_pressure = pressure;
91
92 GlobalDimMatrixType const intrinsic_permeability =
95 vars, pos, t, dt));
96 auto const viscosity =
98 .template value<double>(vars, pos, t, dt);
99
100 Eigen::Vector3d flux(0.0, 0.0, 0.0);
101 flux.head<GlobalDim>() =
102 -intrinsic_permeability / viscosity * shape_matrices.dNdx *
103 Eigen::Map<const NodalVectorType>(local_x.data(), local_x.size());
104
105 return flux;
106}
107
108template <typename ShapeFunction, int GlobalDim>
109template <typename LaplacianGravityVelocityCalculator>
111 assembleMatrixAndVector(double const t, double const dt,
112 std::vector<double> const& local_x,
113 std::vector<double>& local_M_data,
114 std::vector<double>& local_K_data,
115 std::vector<double>& local_b_data)
116{
117 auto const local_matrix_size = local_x.size();
118 assert(local_matrix_size == ShapeFunction::NPOINTS);
119
121 local_M_data, local_matrix_size, local_matrix_size);
123 local_K_data, local_matrix_size, local_matrix_size);
125 local_b_data, local_matrix_size);
126
127 unsigned const n_integration_points =
128 _integration_method.getNumberOfPoints();
129
131 pos.setElementID(_element.getID());
132
133 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
134 auto const& liquid_phase = medium.phase("AqueousLiquid");
135
137 vars.temperature =
139 .template value<double>(vars, pos, t, dt);
140
141 GlobalDimVectorType const projected_body_force_vector =
142 _process_data.element_rotation_matrices[_element.getID()] *
143 _process_data.element_rotation_matrices[_element.getID()].transpose() *
144 _process_data.specific_body_force;
145
146 auto const& Ns = _process_data.shape_matrix_cache
147 .NsHigherOrder<typename ShapeFunction::MeshElement>();
148
149 for (unsigned ip = 0; ip < n_integration_points; ip++)
150 {
151 auto const& ip_data = _ip_data[ip];
152 auto const& N = Ns[ip];
153
154 double p = 0.;
156 vars.liquid_phase_pressure = p;
157
158 // Compute density:
159 auto const fluid_density =
161 .template value<double>(vars, pos, t, dt);
162 assert(fluid_density > 0.);
163 vars.density = fluid_density;
164
165 auto const ddensity_dpressure =
167 .template dValue<double>(
169 pos, t, dt);
170
171 auto const porosity =
173 .template value<double>(vars, pos, t, dt);
174 auto const storage = medium[MaterialPropertyLib::PropertyType::storage]
175 .template value<double>(vars, pos, t, dt);
176
177 // Assemble mass matrix, M
178 local_M.noalias() +=
179 (porosity * ddensity_dpressure / fluid_density + storage) *
180 N.transpose() * N * ip_data.integration_weight;
181
182 // Compute viscosity:
183 auto const viscosity =
185 .template value<double>(vars, pos, t, dt);
186
187 pos.setIntegrationPoint(ip);
188 GlobalDimMatrixType const permeability =
191 vars, pos, t, dt));
192
193 // Assemble Laplacian, K, and RHS by the gravitational term
194 LaplacianGravityVelocityCalculator::calculateLaplacianAndGravityTerm(
195 local_K, local_b, ip_data, permeability, viscosity, fluid_density,
196 projected_body_force_vector, _process_data.has_gravity);
197 }
198}
199
200template <typename ShapeFunction, int GlobalDim>
201template <typename VelocityCacheType>
203 bool const is_scalar_permeability, const double t, const double dt,
204 std::vector<double> const& local_x,
206 VelocityCacheType& darcy_velocity_at_ips) const
207{
208 if (is_scalar_permeability)
209 { // isotropic or 1D problem.
210 computeProjectedDarcyVelocity<IsotropicCalculator>(
211 t, dt, local_x, pos, darcy_velocity_at_ips);
212 }
213 else
214 {
215 computeProjectedDarcyVelocity<AnisotropicCalculator>(
216 t, dt, local_x, pos, darcy_velocity_at_ips);
217 }
218}
219
220template <typename ShapeFunction, int GlobalDim>
221std::vector<double> const&
223 const double t,
224 std::vector<GlobalVector*> const& x,
225 std::vector<NumLib::LocalToGlobalIndexMap const*> const& dof_tables,
226 std::vector<double>& velocity_cache) const
227{
228 // TODO (tf) Temporary value not used by current material models. Need
229 // extension of secondary variable interface.
230 double const dt = std::numeric_limits<double>::quiet_NaN();
231
232 constexpr int process_id = 0;
233 auto const indices =
234 NumLib::getIndices(_element.getID(), *dof_tables[process_id]);
235 auto const local_x = x[process_id]->get(indices);
236 auto const n_integration_points = _integration_method.getNumberOfPoints();
237 velocity_cache.clear();
238
240 pos.setElementID(_element.getID());
241
242 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
244 vars.temperature =
246 .template value<double>(vars, pos, t, dt);
247 vars.liquid_phase_pressure = std::numeric_limits<double>::quiet_NaN();
248
249 GlobalDimMatrixType const permeability =
252 vars, pos, t, dt));
253
254 assert(permeability.rows() == GlobalDim || permeability.rows() == 1);
255
256 bool const is_scalar_permeability = (permeability.size() == 1);
257
258 auto velocity_cache_vectors = MathLib::createZeroedMatrix<
259 Eigen::Matrix<double, GlobalDim, Eigen::Dynamic, Eigen::RowMajor>>(
260 velocity_cache, GlobalDim, n_integration_points);
261
262 computeDarcyVelocity(is_scalar_permeability, t, dt, local_x, pos,
263 velocity_cache_vectors);
264
265 return velocity_cache;
266}
267
268template <typename ShapeFunction, int GlobalDim>
269template <typename LaplacianGravityVelocityCalculator,
270 typename VelocityCacheType>
273 const double t, const double dt, std::vector<double> const& local_x,
275 VelocityCacheType& darcy_velocity_at_ips) const
276{
277 auto const local_matrix_size = local_x.size();
278 assert(local_matrix_size == ShapeFunction::NPOINTS);
279
280 const auto local_p_vec =
281 MathLib::toVector<NodalVectorType>(local_x, local_matrix_size);
282
283 unsigned const n_integration_points =
284 _integration_method.getNumberOfPoints();
285
286 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
287 auto const& liquid_phase = medium.phase("AqueousLiquid");
288
290 vars.temperature =
292 .template value<double>(vars, pos, t, dt);
293
294 GlobalDimVectorType const projected_body_force_vector =
295 _process_data.element_rotation_matrices[_element.getID()] *
296 _process_data.element_rotation_matrices[_element.getID()].transpose() *
297 _process_data.specific_body_force;
298
299 auto const& Ns = _process_data.shape_matrix_cache
300 .NsHigherOrder<typename ShapeFunction::MeshElement>();
301
302 for (unsigned ip = 0; ip < n_integration_points; ip++)
303 {
304 auto const& ip_data = _ip_data[ip];
305 auto const& N = Ns[ip];
306 double p = 0.;
308 vars.liquid_phase_pressure = p;
309
310 // Compute density:
311 auto const fluid_density =
313 .template value<double>(vars, pos, t, dt);
314 vars.density = fluid_density;
315
316 // Compute viscosity:
317 auto const viscosity =
319 .template value<double>(vars, pos, t, dt);
320
321 GlobalDimMatrixType const permeability =
324 vars, pos, t, dt));
325
326 darcy_velocity_at_ips.col(ip) =
327 LaplacianGravityVelocityCalculator::calculateVelocity(
328 local_p_vec, ip_data, permeability, viscosity, fluid_density,
329 projected_body_force_vector, _process_data.has_gravity);
330 }
331}
332
333template <typename ShapeFunction, int GlobalDim>
336 Eigen::Map<NodalMatrixType>& local_K,
337 Eigen::Map<NodalVectorType>& local_b,
339 GlobalDimMatrixType const& permeability, double const mu,
340 double const rho_L, GlobalDimVectorType const& specific_body_force,
341 bool const has_gravity)
342{
343 const double K = permeability(0, 0) / mu;
344 const double fac = K * ip_data.integration_weight;
345 local_K.noalias() += fac * ip_data.dNdx.transpose() * ip_data.dNdx;
346
347 if (has_gravity)
348 {
349 local_b.noalias() +=
350 (fac * rho_L) * ip_data.dNdx.transpose() * specific_body_force;
351 }
352}
353
354template <typename ShapeFunction, int GlobalDim>
355Eigen::Matrix<double, GlobalDim, 1>
358 Eigen::Map<const NodalVectorType> const& local_p,
360 GlobalDimMatrixType const& permeability, double const mu,
361 double const rho_L, GlobalDimVectorType const& specific_body_force,
362 bool const has_gravity)
363{
364 const double K = permeability(0, 0) / mu;
365 // Compute the velocity
366 GlobalDimVectorType velocity = -K * ip_data.dNdx * local_p;
367 // gravity term
368 if (has_gravity)
369 {
370 velocity += (K * rho_L) * specific_body_force;
371 }
372 return velocity;
373}
374
375template <typename ShapeFunction, int GlobalDim>
378 Eigen::Map<NodalMatrixType>& local_K,
379 Eigen::Map<NodalVectorType>& local_b,
381 GlobalDimMatrixType const& permeability, double const mu,
382 double const rho_L, GlobalDimVectorType const& specific_body_force,
383 bool const has_gravity)
384{
385 const double fac = ip_data.integration_weight / mu;
386 local_K.noalias() +=
387 fac * ip_data.dNdx.transpose() * permeability * ip_data.dNdx;
388
389 if (has_gravity)
390 {
391 local_b.noalias() += (fac * rho_L) * ip_data.dNdx.transpose() *
392 permeability * specific_body_force;
393 }
394}
395
396template <typename ShapeFunction, int GlobalDim>
397Eigen::Matrix<double, GlobalDim, 1>
400 Eigen::Map<const NodalVectorType> const& local_p,
402 GlobalDimMatrixType const& permeability, double const mu,
403 double const rho_L, GlobalDimVectorType const& specific_body_force,
404 bool const has_gravity)
405{
406 // Compute the velocity
407 GlobalDimVectorType velocity = -permeability * ip_data.dNdx * local_p / mu;
408
409 // gravity term
410 if (has_gravity)
411 {
412 velocity += (rho_L / mu) * permeability * specific_body_force;
413 }
414 return velocity;
415}
416
417} // namespace LiquidFlow
418} // namespace ProcessLib
void setElementID(std::size_t element_id)
void setIntegrationPoint(unsigned integration_point)
Eigen::Vector3d getFlux(MathLib::Point3d const &p_local_coords, double const t, std::vector< double > const &local_x) const override
typename ShapeMatricesType::GlobalDimVectorType GlobalDimVectorType
void computeProjectedDarcyVelocity(const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const
void assemble(double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
void assembleMatrixAndVector(double const t, double const dt, std::vector< double > const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
void computeDarcyVelocity(bool const is_scalar_permeability, const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const
typename ShapeMatricesType::GlobalDimMatrixType GlobalDimMatrixType
std::vector< double > const & getIntPtDarcyVelocity(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &velocity_cache) const override
Eigen::Matrix< double, GlobalDim, GlobalDim > formEigenTensor(MaterialPropertyLib::PropertyDataType const &values)
Eigen::Map< Vector > createZeroedVector(std::vector< double > &data, Eigen::VectorXd::Index size)
Eigen::Map< const Vector > toVector(std::vector< double > const &data, Eigen::VectorXd::Index size)
Creates an Eigen mapped vector from the given data vector.
Eigen::Map< Matrix > createZeroedMatrix(std::vector< double > &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)
void shapeFunctionInterpolate(const NodalValues &, const ShapeMatrix &)
std::vector< GlobalIndexType > getIndices(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
std::vector< typename ShapeMatricesType::ShapeMatrices, Eigen::aligned_allocator< typename ShapeMatricesType::ShapeMatrices > > computeShapeMatrices(MeshLib::Element const &e, bool const is_axially_symmetric, PointContainer const &points)
static void calculateLaplacianAndGravityTerm(Eigen::Map< NodalMatrixType > &local_K, Eigen::Map< NodalVectorType > &local_b, IntegrationPointData< GlobalDimNodalMatrixType > const &ip_data, GlobalDimMatrixType const &permeability, double const mu, double const rho_L, GlobalDimVectorType const &specific_body_force, bool const has_gravity)
static Eigen::Matrix< double, GlobalDim, 1 > calculateVelocity(Eigen::Map< const NodalVectorType > const &local_p, IntegrationPointData< GlobalDimNodalMatrixType > const &ip_data, GlobalDimMatrixType const &permeability, double const mu, double const rho_L, GlobalDimVectorType const &specific_body_force, bool const has_gravity)
static void calculateLaplacianAndGravityTerm(Eigen::Map< NodalMatrixType > &local_K, Eigen::Map< NodalVectorType > &local_b, IntegrationPointData< GlobalDimNodalMatrixType > const &ip_data, GlobalDimMatrixType const &permeability, double const mu, double const rho_L, GlobalDimVectorType const &specific_body_force, bool const has_gravity)
static Eigen::Matrix< double, GlobalDim, 1 > calculateVelocity(Eigen::Map< const NodalVectorType > const &local_p, IntegrationPointData< GlobalDimNodalMatrixType > const &ip_data, GlobalDimMatrixType const &permeability, double const mu, double const rho_L, GlobalDimVectorType const &specific_body_force, bool const has_gravity)