39namespace ComponentTransport
41template <
typename GlobalDimNodalMatrixType>
45 double const& integration_weight_)
51 GlobalDimNodalMatrixType
const dNdx;
58 double porosity = std::numeric_limits<double>::quiet_NaN();
73 std::size_t
const mesh_item_id,
74 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& dof_tables,
75 std::vector<GlobalVector*>
const& x,
double const t)
77 std::vector<double> local_x_vec;
79 auto const n_processes = x.size();
80 for (std::size_t process_id = 0; process_id < n_processes; ++process_id)
84 assert(!indices.empty());
85 auto const local_solution = x[process_id]->get(indices);
86 local_x_vec.insert(std::end(local_x_vec),
87 std::begin(local_solution),
88 std::end(local_solution));
96 std::size_t
const mesh_item_id,
97 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& dof_tables,
98 std::vector<GlobalVector*>
const& x,
double const t,
double const dt)
100 std::vector<double> local_x_vec;
102 auto const n_processes = x.size();
103 for (std::size_t process_id = 0; process_id < n_processes; ++process_id)
107 assert(!indices.empty());
108 auto const local_solution = x[process_id]->get(indices);
109 local_x_vec.insert(std::end(local_x_vec),
110 std::begin(local_solution),
111 std::end(local_solution));
119 std::size_t
const mesh_item_id,
120 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& dof_tables,
121 std::vector<GlobalVector*>
const& x,
double const t,
double const dt,
124 std::vector<double> local_x_vec;
126 auto const n_processes = x.size();
127 for (std::size_t pcs_id = 0; pcs_id < n_processes; ++pcs_id)
131 assert(!indices.empty());
132 auto const local_solution = x[pcs_id]->get(indices);
133 local_x_vec.insert(std::end(local_x_vec),
134 std::begin(local_solution),
135 std::end(local_solution));
141 auto const num_r_c = indices.size();
143 std::vector<double> local_M_data;
144 local_M_data.reserve(num_r_c * num_r_c);
145 std::vector<double> local_K_data;
146 local_K_data.reserve(num_r_c * num_r_c);
147 std::vector<double> local_b_data;
148 local_b_data.reserve(num_r_c);
151 local_K_data, local_b_data,
154 auto const r_c_indices =
156 if (!local_M_data.empty())
160 M.
add(r_c_indices, local_M);
162 if (!local_K_data.empty())
166 K.
add(r_c_indices, local_K);
168 if (!local_b_data.empty())
170 b.
add(indices, local_b_data);
175 double const t,
double const dt) = 0;
178 std::size_t
const ele_id) = 0;
182 std::vector<GlobalVector*>
const& x,
183 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& dof_table,
184 std::vector<double>& cache)
const = 0;
187 const double t, std::vector<GlobalVector*>
const& x,
188 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& dof_table,
189 std::vector<double>& cache,
int const component_id)
const = 0;
193 Eigen::VectorXd
const& ,
double const ) = 0;
200 double const t,
double const dt, Eigen::VectorXd
const& local_x,
201 std::vector<double>& local_M_data, std::vector<double>& local_K_data,
202 std::vector<double>& local_b_data,
int const transport_process_id) = 0;
205template <
typename ShapeFunction,
int GlobalDim>
217 ShapeFunction::NPOINTS;
223 typename ShapeMatricesType::template MatrixType<
pressure_size,
226 typename ShapeMatricesType::template VectorType<pressure_size>;
229 Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
243 std::size_t
const local_matrix_size,
245 bool is_axially_symmetric,
247 std::vector<std::reference_wrapper<ProcessVariable>>
const&
248 transport_process_variables)
250 : ShapeFunction::NPOINTS),
252 ? ShapeFunction::NPOINTS
253 : 2 * ShapeFunction::NPOINTS),
259 (void)local_matrix_size;
261 unsigned const n_integration_points =
263 _ip_data.reserve(n_integration_points);
270 auto const shape_matrices =
272 GlobalDim>(element, is_axially_symmetric,
276 for (
unsigned ip = 0; ip < n_integration_points; ip++)
279 shape_matrices[ip].dNdx,
281 shape_matrices[ip].integralMeasure *
282 shape_matrices[ip].detJ * aperture_size);
286 .template initialValue<double>(
287 pos, std::numeric_limits<double>::quiet_NaN() );
297 auto& chemical_system_index_map =
300 unsigned const n_integration_points =
302 for (
unsigned ip = 0; ip < n_integration_points; ip++)
305 chemical_system_index_map.empty()
307 : chemical_system_index_map.back() + 1;
308 chemical_system_index_map.push_back(
314 double const t)
override
328 unsigned const n_integration_points =
331 for (
unsigned ip = 0; ip < n_integration_points; ip++)
334 auto const& N = Ns[ip];
335 auto const& chemical_system_id = ip_data.chemical_system_id;
338 std::vector<double> C_int_pt(n_component);
339 for (
unsigned component_id = 0; component_id < n_component;
342 auto const concentration_index =
346 local_x.template segment<concentration_size>(
347 concentration_index);
350 C_int_pt[component_id]);
360 double const t,
double dt)
override
377 unsigned const n_integration_points =
380 for (
unsigned ip = 0; ip < n_integration_points; ip++)
383 auto const& N = Ns[ip];
384 auto& porosity = ip_data.porosity;
385 auto const& porosity_prev = ip_data.porosity_prev;
386 auto const& chemical_system_id = ip_data.chemical_system_id;
389 std::vector<double> C_int_pt(n_component);
390 for (
unsigned component_id = 0; component_id < n_component;
393 auto const concentration_index =
397 local_x.template segment<concentration_size>(
398 concentration_index);
401 C_int_pt[component_id]);
413 .template value<double>(vars, vars_prev, pos, t,
420 C_int_pt, chemical_system_id, medium, vars, pos, t, dt);
425 double const dt)
override
439 ip_data.porosity = ip_data.porosity_prev;
444 ip_data.porosity, t, dt);
447 ip_data.chemical_system_id, medium, ip_data.porosity);
452 std::vector<double>
const& local_x,
453 std::vector<double>
const& ,
454 std::vector<double>& local_M_data,
455 std::vector<double>& local_K_data,
456 std::vector<double>& local_b_data)
override
458 auto const local_matrix_size = local_x.size();
463 assert(local_matrix_size == ShapeFunction::NPOINTS * num_nodal_dof);
466 local_M_data, local_matrix_size, local_matrix_size);
468 local_K_data, local_matrix_size, local_matrix_size);
470 local_b_data, local_matrix_size);
473 auto Kpp = local_K.template block<pressure_size, pressure_size>(
475 auto Mpp = local_M.template block<pressure_size, pressure_size>(
477 auto Bp = local_b.template segment<pressure_size>(
pressure_index);
479 auto local_p = Eigen::Map<const NodalVectorType>(
486 auto const number_of_components = num_nodal_dof - 1;
487 for (
int component_id = 0; component_id < number_of_components;
499 auto concentration_index =
503 local_K.template block<concentration_size, concentration_size>(
504 concentration_index, concentration_index);
506 local_M.template block<concentration_size, concentration_size>(
507 concentration_index, concentration_index);
509 local_M.template block<concentration_size, pressure_size>(
512 local_M.template block<pressure_size, concentration_size>(
515 auto local_C = Eigen::Map<const NodalVectorType>(
519 MCC, MCp, MpC, Kpp, Mpp, Bp);
523 auto const stoichiometric_matrix =
527 assert(stoichiometric_matrix);
529 for (Eigen::SparseMatrix<double>::InnerIterator it(
530 *stoichiometric_matrix, component_id);
534 auto const stoichiometric_coefficient = it.value();
535 auto const coupled_component_id = it.row();
536 auto const kinetic_prefactor =
540 auto const concentration_index =
542 auto const coupled_concentration_index =
547 concentration_index, coupled_concentration_index);
551 stoichiometric_coefficient,
561 Eigen::Ref<const NodalVectorType>
const& C_nodal_values,
562 Eigen::Ref<const NodalVectorType>
const& p_nodal_values,
563 Eigen::Ref<LocalBlockMatrixType> KCC,
564 Eigen::Ref<LocalBlockMatrixType> MCC,
565 Eigen::Ref<LocalBlockMatrixType> MCp,
566 Eigen::Ref<LocalBlockMatrixType> MpC,
567 Eigen::Ref<LocalBlockMatrixType> Kpp,
568 Eigen::Ref<LocalBlockMatrixType> Mpp,
569 Eigen::Ref<LocalSegmentVectorType> Bp)
571 unsigned const n_integration_points =
583 auto const& phase = medium.
phase(
"AqueousLiquid");
594 std::vector<GlobalDimVectorType> ip_flux_vector;
595 double average_velocity_norm = 0.0;
598 ip_flux_vector.reserve(n_integration_points);
605 for (
unsigned ip(0); ip < n_integration_points; ++ip)
608 auto const& dNdx = ip_data.dNdx;
609 auto const& N = Ns[ip];
610 auto const& w = ip_data.integration_weight;
611 auto& porosity = ip_data.porosity;
613 double C_int_pt = 0.0;
614 double p_int_pt = 0.0;
631 .template value<double>(vars, pos, t, dt);
634 auto const& retardation_factor =
636 .template value<double>(vars, pos, t, dt);
638 auto const& solute_dispersivity_transverse = medium.template value<
642 auto const& solute_dispersivity_longitudinal =
643 medium.template value<double>(
645 longitudinal_dispersivity);
652 .template value<double>(vars, pos, t, dt);
654 auto const decay_rate =
656 .template value<double>(vars, pos, t, dt);
658 auto const& pore_diffusion_coefficient =
661 .value(vars, pos, t, dt));
669 .template value<double>(vars, pos, t, dt);
675 (dNdx * p_nodal_values - density * b))
678 const double drho_dp =
680 .template dValue<double>(
685 const double drho_dC =
687 .template dValue<double>(
694 pore_diffusion_coefficient, velocity, porosity,
695 solute_dispersivity_transverse,
696 solute_dispersivity_longitudinal);
698 const double R_times_phi(retardation_factor * porosity);
700 auto const N_t_N = (N.transpose() * N).eval();
704 MCp.noalias() += N_t_N * (C_int_pt * R_times_phi * drho_dp * w);
705 MCC.noalias() += N_t_N * (C_int_pt * R_times_phi * drho_dC * w);
706 KCC.noalias() -= dNdx.transpose() * mass_density_flow * N * w;
710 ip_flux_vector.emplace_back(mass_density_flow);
711 average_velocity_norm += velocity.norm();
713 MCC.noalias() += N_t_N * (R_times_phi * density * w);
714 KCC.noalias() += N_t_N * (decay_rate * R_times_phi * density * w);
715 KCC_Laplacian.noalias() +=
716 dNdx.transpose() * hydrodynamic_dispersion * dNdx * density * w;
718 MpC.noalias() += N_t_N * (porosity * drho_dC * w);
721 if (component_id == 0)
723 Mpp.noalias() += N_t_N * (porosity * drho_dp * w);
725 dNdx.transpose() * K_over_mu * dNdx * (density * w);
729 Bp.noalias() += dNdx.transpose() * K_over_mu * b *
730 (density * density * w);
738 typename ShapeFunction::MeshElement>(
743 average_velocity_norm /
744 static_cast<double>(n_integration_points),
748 KCC.noalias() += KCC_Laplacian;
752 Eigen::Ref<LocalBlockMatrixType> KCmCn,
753 double const stoichiometric_coefficient,
754 double const kinetic_prefactor)
756 unsigned const n_integration_points =
766 auto const& phase = medium.
phase(
"AqueousLiquid");
774 for (
unsigned ip(0); ip < n_integration_points; ++ip)
777 auto const& w = ip_data.integration_weight;
778 auto const& N = Ns[ip];
779 auto& porosity = ip_data.porosity;
788 auto const retardation_factor =
790 .template value<double>(vars, pos, t, dt);
793 .template value<double>(vars, pos, t, dt);
797 .template value<double>(vars, pos, t, dt);
799 KCmCn.noalias() -= w * N.transpose() * stoichiometric_coefficient *
800 kinetic_prefactor * retardation_factor *
801 porosity * density * N;
806 Eigen::VectorXd
const& local_x,
807 Eigen::VectorXd
const& local_x_prev,
808 int const process_id,
809 std::vector<double>& local_M_data,
810 std::vector<double>& local_K_data,
811 std::vector<double>& local_b_data)
override
816 local_M_data, local_K_data, local_b_data);
821 local_M_data, local_K_data,
828 local_M_data, local_K_data,
829 local_b_data, process_id);
835 Eigen::VectorXd
const& local_x,
836 Eigen::VectorXd
const& local_x_prev,
837 std::vector<double>& local_M_data,
838 std::vector<double>& local_K_data,
839 std::vector<double>& local_b_data)
843 auto const local_C = local_x.template segment<concentration_size>(
845 auto const local_C_prev =
857 unsigned const n_integration_points =
869 auto const& phase = medium.
phase(
"AqueousLiquid");
878 for (
unsigned ip(0); ip < n_integration_points; ++ip)
881 auto const& dNdx = ip_data.dNdx;
882 auto const& w = ip_data.integration_weight;
883 auto const& N = Ns[ip];
884 auto& porosity = ip_data.porosity;
885 auto const& porosity_prev = ip_data.porosity_prev;
887 double const C_int_pt = N.dot(local_C);
888 double const p_int_pt = N.dot(local_p);
889 double const T_int_pt = N.dot(local_T);
903 .template value<double>(vars, vars_prev, pos, t,
914 .template value<double>(vars, pos, t, dt);
922 .template value<double>(vars, pos, t, dt);
926 const double drho_dp =
928 .template dValue<double>(
932 const double drho_dC =
934 .template dValue<double>(
939 local_M.noalias() += w * N.transpose() * porosity * drho_dp * N;
941 w * dNdx.transpose() * density * K_over_mu * dNdx;
946 w * density * density * dNdx.transpose() * K_over_mu * b;
951 double const C_dot = (C_int_pt - N.dot(local_C_prev)) / dt;
954 w * N.transpose() * porosity * drho_dC * C_dot;
960 Eigen::VectorXd
const& local_x,
961 Eigen::VectorXd
const& ,
962 std::vector<double>& local_M_data,
963 std::vector<double>& local_K_data,
964 std::vector<double>& )
966 assert(local_x.size() ==
985 auto const& liquid_phase = medium.
phase(
"AqueousLiquid");
993 unsigned const n_integration_points =
996 std::vector<GlobalDimVectorType> ip_flux_vector;
997 double average_velocity_norm = 0.0;
998 ip_flux_vector.reserve(n_integration_points);
1004 for (
unsigned ip(0); ip < n_integration_points; ip++)
1006 auto const& ip_data = this->
_ip_data[ip];
1007 auto const& dNdx = ip_data.dNdx;
1008 auto const& w = ip_data.integration_weight;
1009 auto const& N = Ns[ip];
1011 double p_at_xi = 0.;
1013 double T_at_xi = 0.;
1021 auto const porosity =
1023 .template value<double>(vars, pos, t, dt);
1027 auto const fluid_density =
1030 .template value<double>(vars, pos, t, dt);
1032 auto const specific_heat_capacity_fluid =
1035 .template value<double>(vars, pos, t, dt);
1038 local_M.noalias() += w *
1040 vars, porosity, fluid_density,
1041 specific_heat_capacity_fluid, pos, t, dt) *
1045 auto const viscosity =
1048 .template value<double>(vars, pos, t, dt);
1050 auto const intrinsic_permeability =
1055 .value(vars, pos, t, dt));
1058 intrinsic_permeability / viscosity;
1060 process_data.has_gravity
1062 (dNdx * local_p - fluid_density * b))
1067 vars, fluid_density, specific_heat_capacity_fluid, velocity,
1070 local_K.noalias() +=
1071 w * dNdx.transpose() * thermal_conductivity_dispersivity * dNdx;
1073 ip_flux_vector.emplace_back(velocity * fluid_density *
1074 specific_heat_capacity_fluid);
1075 average_velocity_norm += velocity.norm();
1079 process_data.stabilizer, this->_ip_data,
1081 average_velocity_norm /
static_cast<double>(n_integration_points),
1086 double const t,
double const dt, Eigen::VectorXd
const& local_x,
1087 Eigen::VectorXd
const& local_x_prev, std::vector<double>& local_M_data,
1088 std::vector<double>& local_K_data,
1089 std::vector<double>& ,
int const transport_process_id)
1091 assert(
static_cast<int>(local_x.size()) ==
1097 auto const local_p =
1102 auto const local_C = local_x.template segment<concentration_size>(
1106 auto const local_p_prev =
1117 unsigned const n_integration_points =
1120 std::vector<GlobalDimVectorType> ip_flux_vector;
1121 double average_velocity_norm = 0.0;
1124 ip_flux_vector.reserve(n_integration_points);
1137 auto const& medium =
1139 auto const& phase = medium.
phase(
"AqueousLiquid");
1140 auto const component_id =
1142 auto const& component = phase.
component(
1149 for (
unsigned ip(0); ip < n_integration_points; ++ip)
1152 auto const& dNdx = ip_data.dNdx;
1153 auto const& w = ip_data.integration_weight;
1154 auto const& N = Ns[ip];
1155 auto& porosity = ip_data.porosity;
1156 auto const& porosity_prev = ip_data.porosity_prev;
1158 double const C_int_pt = N.dot(local_C);
1159 double const p_int_pt = N.dot(local_p);
1160 double const T_int_pt = N.dot(local_T);
1173 vars_prev.
porosity = porosity_prev;
1179 .template value<double>(vars, vars_prev, pos, t,
1185 auto const& retardation_factor =
1187 .template value<double>(vars, pos, t, dt);
1189 auto const& solute_dispersivity_transverse = medium.template value<
1192 auto const& solute_dispersivity_longitudinal =
1193 medium.template value<double>(
1195 longitudinal_dispersivity);
1198 auto const density =
1200 .template value<double>(vars, pos, t, dt);
1201 auto const decay_rate =
1203 .template value<double>(vars, pos, t, dt);
1205 auto const& pore_diffusion_coefficient =
1208 .value(vars, pos, t, dt));
1215 .template value<double>(vars, pos, t, dt);
1221 (dNdx * local_p - density * b))
1227 pore_diffusion_coefficient, velocity, porosity,
1228 solute_dispersivity_transverse,
1229 solute_dispersivity_longitudinal);
1231 double const R_times_phi = retardation_factor * porosity;
1232 auto const N_t_N = (N.transpose() * N).eval();
1236 const double drho_dC =
1238 .template dValue<double>(
1241 local_M.noalias() +=
1242 N_t_N * (R_times_phi * C_int_pt * drho_dC * w);
1245 local_M.noalias() += N_t_N * (R_times_phi * density * w);
1250 double const p_dot = (p_int_pt - N.dot(local_p_prev)) / dt;
1252 const double drho_dp =
1254 .template dValue<double>(vars,
1256 liquid_phase_pressure,
1259 local_K.noalias() +=
1260 N_t_N * ((R_times_phi * drho_dp * p_dot) * w) -
1261 dNdx.transpose() * velocity * N * (density * w);
1265 ip_flux_vector.emplace_back(velocity * density);
1266 average_velocity_norm += velocity.norm();
1268 local_K.noalias() +=
1269 N_t_N * (decay_rate * R_times_phi * density * w);
1271 KCC_Laplacian.noalias() += dNdx.transpose() *
1272 hydrodynamic_dispersion * dNdx *
1279 typename ShapeFunction::MeshElement>(
1282 average_velocity_norm /
1283 static_cast<double>(n_integration_points),
1286 local_K.noalias() += KCC_Laplacian;
1290 double const t,
double const dt, Eigen::VectorXd
const& local_x,
1291 Eigen::VectorXd
const& local_x_prev,
int const process_id,
1292 std::vector<double>& local_b_data,
1293 std::vector<double>& local_Jac_data)
override
1298 local_b_data, local_Jac_data);
1302 int const component_id = process_id - 1;
1304 t, dt, local_x, local_x_prev, local_b_data, local_Jac_data,
1310 double const t,
double const dt, Eigen::VectorXd
const& local_x,
1311 Eigen::VectorXd
const& local_x_prev, std::vector<double>& local_b_data,
1312 std::vector<double>& local_Jac_data)
1314 auto const p = local_x.template segment<pressure_size>(
pressure_index);
1315 auto const c = local_x.template segment<concentration_size>(
1327 unsigned const n_integration_points =
1336 auto const& medium =
1338 auto const& phase = medium.
phase(
"AqueousLiquid");
1347 for (
unsigned ip(0); ip < n_integration_points; ++ip)
1350 auto const& dNdx = ip_data.dNdx;
1351 auto const& w = ip_data.integration_weight;
1352 auto const& N = Ns[ip];
1353 auto& phi = ip_data.porosity;
1354 auto const& phi_prev = ip_data.porosity_prev;
1356 double const p_ip = N.dot(p);
1357 double const c_ip = N.dot(c);
1359 double const cdot_ip = (c_ip - N.dot(c_prev)) / dt;
1371 .template value<double>(vars, vars_prev, pos, t,
1378 .template value<double>(vars, pos, t, dt);
1385 .template value<double>(vars, pos, t, dt);
1387 auto const drho_dp =
1389 .template dValue<double>(
1393 auto const drho_dc =
1395 .template dValue<double>(
1400 local_Jac.noalias() += w * N.transpose() * phi * drho_dp / dt * N +
1401 w * dNdx.transpose() * rho * k / mu * dNdx;
1403 local_rhs.noalias() -=
1404 w * N.transpose() * phi *
1405 (drho_dp * N * p_prev + drho_dc * cdot_ip) +
1406 w * rho * dNdx.transpose() * k / mu * dNdx * p;
1410 local_rhs.noalias() +=
1411 w * rho * dNdx.transpose() * k / mu * rho * b;
1417 double const t,
double const dt, Eigen::VectorXd
const& local_x,
1418 Eigen::VectorXd
const& local_x_prev, std::vector<double>& local_b_data,
1419 std::vector<double>& local_Jac_data,
int const component_id)
1421 auto const concentration_index =
1424 auto const p = local_x.template segment<pressure_size>(
pressure_index);
1426 local_x.template segment<concentration_size>(concentration_index);
1444 unsigned const n_integration_points =
1447 std::vector<GlobalDimVectorType> ip_flux_vector;
1448 double average_velocity_norm = 0.0;
1449 ip_flux_vector.reserve(n_integration_points);
1461 auto const& medium =
1463 auto const& phase = medium.
phase(
"AqueousLiquid");
1464 auto const& component = phase.
component(
1471 for (
unsigned ip(0); ip < n_integration_points; ++ip)
1474 auto const& dNdx = ip_data.dNdx;
1475 auto const& w = ip_data.integration_weight;
1476 auto const& N = Ns[ip];
1477 auto& phi = ip_data.porosity;
1478 auto const& phi_prev = ip_data.porosity_prev;
1480 double const p_ip = N.dot(p);
1481 double const c_ip = N.dot(c);
1498 .template value<double>(vars, vars_prev, pos, t,
1506 .template value<double>(vars, pos, t, dt);
1508 auto const alpha_T = medium.template value<double>(
1510 auto const alpha_L = medium.template value<double>(
1514 .template value<double>(vars, pos, t, dt);
1518 .template value<double>(vars, pos, t, dt);
1522 .value(vars, pos, t, dt));
1528 .template value<double>(vars, pos, t, dt);
1540 local_Jac.noalias() +=
1541 w * rho * N.transpose() * phi * R * (alpha + 1 / dt) * N;
1543 KCC_Laplacian.noalias() += w * rho * dNdx.transpose() * D * dNdx;
1545 auto const cdot = (c - c_prev) / dt;
1546 local_rhs.noalias() -=
1547 w * rho * N.transpose() * phi * R * N * (cdot + alpha * c);
1549 ip_flux_vector.emplace_back(q * rho);
1550 average_velocity_norm += q.norm();
1556 average_velocity_norm /
static_cast<double>(n_integration_points),
1559 local_rhs.noalias() -= KCC_Laplacian * c;
1561 local_Jac.noalias() += KCC_Laplacian;
1565 double const t,
double const dt, Eigen::VectorXd
const& local_x,
1566 std::vector<double>& local_M_data, std::vector<double>& local_K_data,
1567 std::vector<double>& local_b_data,
1568 int const transport_process_id)
override
1570 auto const local_C = local_x.template segment<concentration_size>(
1581 unsigned const n_integration_points =
1590 auto const& medium =
1592 auto const component_id = transport_process_id - 1;
1598 for (
unsigned ip(0); ip < n_integration_points; ++ip)
1601 auto const w = ip_data.integration_weight;
1602 auto const& N = Ns[ip];
1603 auto& porosity = ip_data.porosity;
1604 auto const& porosity_prev = ip_data.porosity_prev;
1605 auto const chemical_system_id = ip_data.chemical_system_id;
1607 double C_int_pt = 0.0;
1612 auto const porosity_dot = (porosity - porosity_prev) / dt;
1616 vars_prev.
porosity = porosity_prev;
1622 .template value<double>(vars, vars_prev, pos, t,
1626 local_M.noalias() += w * N.transpose() * porosity * N;
1628 local_K.noalias() += w * N.transpose() * porosity_dot * N;
1630 if (chemical_system_id == -1)
1635 auto const C_post_int_pt =
1637 component_id, chemical_system_id);
1639 local_b.noalias() +=
1640 w * N.transpose() * porosity * (C_post_int_pt - C_int_pt) / dt;
1646 std::vector<GlobalVector*>
const& x,
1647 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& dof_table,
1648 std::vector<double>& cache)
const override
1650 assert(x.size() == dof_table.size());
1652 auto const n_processes = x.size();
1653 std::vector<std::vector<double>> local_x;
1654 local_x.reserve(n_processes);
1656 for (std::size_t process_id = 0; process_id < n_processes; ++process_id)
1658 auto const indices =
1660 assert(!indices.empty());
1661 local_x.push_back(x[process_id]->get(indices));
1665 if (n_processes == 1)
1667 auto const local_p = Eigen::Map<const NodalVectorType>(
1669 auto const local_C = Eigen::Map<const NodalVectorType>(
1676 constexpr int pressure_process_id = 0;
1677 constexpr int concentration_process_id = 1;
1678 auto const local_p = Eigen::Map<const NodalVectorType>(
1680 auto const local_C = Eigen::Map<const NodalVectorType>(
1688 Eigen::Ref<const NodalVectorType>
const& p_nodal_values,
1689 Eigen::Ref<const NodalVectorType>
const& C_nodal_values,
1690 std::vector<double>& cache)
const
1692 auto const n_integration_points =
1697 Eigen::Matrix<double, GlobalDim, Eigen::Dynamic, Eigen::RowMajor>>(
1698 cache, GlobalDim, n_integration_points);
1709 auto const& medium =
1711 auto const& phase = medium.
phase(
"AqueousLiquid");
1717 for (
unsigned ip = 0; ip < n_integration_points; ++ip)
1719 auto const& ip_data =
_ip_data[ip];
1720 auto const& dNdx = ip_data.dNdx;
1721 auto const& N = Ns[ip];
1722 auto const& porosity = ip_data.porosity;
1724 double C_int_pt = 0.0;
1725 double p_int_pt = 0.0;
1736 double const dt = std::numeric_limits<double>::quiet_NaN();
1741 .template value<double>(vars, pos, t, dt);
1744 cache_mat.col(ip).noalias() = -K_over_mu * dNdx * p_nodal_values;
1749 .template value<double>(vars, pos, t, dt);
1751 cache_mat.col(ip).noalias() += K_over_mu * rho_w * b;
1759 const unsigned integration_point)
const override
1762 typename ShapeFunction::MeshElement>()[integration_point];
1765 return Eigen::Map<const Eigen::RowVectorXd>(N.data(), N.size());
1770 std::vector<double>
const& local_x)
const override
1772 auto const local_p = Eigen::Map<const NodalVectorType>(
1774 auto const local_C = Eigen::Map<const NodalVectorType>(
1780 auto const shape_matrices =
1784 std::array{pnt_local_coords})[0];
1794 auto const& medium =
1796 auto const& phase = medium.
phase(
"AqueousLiquid");
1809 double const dt = std::numeric_limits<double>::quiet_NaN();
1815 .template value<double>(vars, pos, t, dt);
1820 .template value<double>(vars, pos, t, dt);
1823 q += K_over_mu * rho_w * b;
1825 Eigen::Vector3d flux(0.0, 0.0, 0.0);
1826 flux.head<GlobalDim>() = rho_w * q;
1833 Eigen::VectorXd
const& local_x,
1834 Eigen::VectorXd
const& )
override
1836 auto const local_p =
1838 auto const local_C = local_x.template segment<concentration_size>(
1841 std::vector<double> ele_velocity;
1844 auto const n_integration_points =
1846 auto const ele_velocity_mat =
1850 Eigen::Map<LocalVectorType>(
1853 ele_velocity_mat.rowwise().sum() / n_integration_points;
1857 std::size_t
const ele_id)
override
1859 auto const n_integration_points =
1868 ip_data.porosity = ip_data.porosity_prev;
1872 medium, ip_data.porosity);
1877 [](
double const s,
auto const& ip)
1878 { return s + ip.porosity; }) /
1879 n_integration_points;
1882 std::vector<GlobalIndexType> chemical_system_indices;
1883 chemical_system_indices.reserve(n_integration_points);
1885 std::back_inserter(chemical_system_indices),
1886 [](
auto const& ip_data)
1887 { return ip_data.chemical_system_id; });
1890 ele_id, chemical_system_indices);
1894 const double t, std::vector<GlobalVector*>
const& x,
1895 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& dof_tables,
1896 std::vector<double>& cache,
int const component_id)
const override
1898 std::vector<double> local_x_vec;
1900 auto const n_processes = x.size();
1901 for (std::size_t process_id = 0; process_id < n_processes; ++process_id)
1903 auto const indices =
1905 assert(!indices.empty());
1906 auto const local_solution = x[process_id]->get(indices);
1907 local_x_vec.insert(std::end(local_x_vec),
1908 std::begin(local_solution),
1909 std::end(local_solution));
1913 auto const p = local_x.template segment<pressure_size>(
pressure_index);
1914 auto const c = local_x.template segment<concentration_size>(
1917 auto const n_integration_points =
1922 Eigen::Matrix<double, GlobalDim, Eigen::Dynamic, Eigen::RowMajor>>(
1923 cache, GlobalDim, n_integration_points);
1934 auto const& medium =
1936 auto const& phase = medium.
phase(
"AqueousLiquid");
1938 auto const& component = phase.
component(
1945 for (
unsigned ip = 0; ip < n_integration_points; ++ip)
1947 auto const& ip_data =
_ip_data[ip];
1948 auto const& dNdx = ip_data.dNdx;
1949 auto const& N = Ns[ip];
1950 auto const& phi = ip_data.porosity;
1952 double const p_ip = N.dot(p);
1953 double const c_ip = N.dot(c);
1959 double const dt = std::numeric_limits<double>::quiet_NaN();
1965 .template value<double>(vars, pos, t, dt);
1967 .template value<double>(vars, pos, t, dt);
1975 auto const alpha_T = medium.template value<double>(
1977 auto const alpha_L = medium.template value<double>(
1981 .value(vars, pos, t, dt));
1988 cache_mat.col(ip).noalias() = q * c_ip - D * dNdx * c;
1995 Eigen::VectorXd
const& ,
1996 double const ,
double const ,
1997 int const )
override
1999 unsigned const n_integration_points =
2002 for (
unsigned ip = 0; ip < n_integration_points; ip++)
2013 std::vector<std::reference_wrapper<ProcessVariable>>
const
2016 std::vector<IntegrationPointData<GlobalDimNodalMatrixType>>
_ip_data;
2020 const double fluid_density,
const double specific_heat_capacity_fluid,
2024 auto const& medium =
2026 auto const& solid_phase = medium.
phase(
"Solid");
2028 auto const specific_heat_capacity_solid =
2032 .template value<double>(vars, pos, t, dt);
2034 auto const solid_density =
2036 .template value<double>(vars, pos, t, dt);
2038 return solid_density * specific_heat_capacity_solid * (1 - porosity) +
2039 fluid_density * specific_heat_capacity_fluid * porosity;
2044 const double fluid_density,
const double specific_heat_capacity_fluid,
2049 auto const& medium =
2052 auto thermal_conductivity =
2057 .value(vars, pos, t, dt));
2059 auto const thermal_dispersivity_transversal =
2062 thermal_transversal_dispersivity)
2063 .template value<double>();
2065 auto const thermal_dispersivity_longitudinal =
2068 thermal_longitudinal_dispersivity)
2069 .template value<double>();
2074 return thermal_conductivity +
2075 fluid_density * specific_heat_capacity_fluid *
2078 GlobalDimMatrixType::Zero(GlobalDim, GlobalDim),
2079 velocity, 0 , thermal_dispersivity_transversal,
2080 thermal_dispersivity_longitudinal);
2084 Eigen::VectorXd
const& local_x)
39namespace ComponentTransport {
…}
GlobalMatrix::IndexType GlobalIndexType
virtual void updatePorosityPostReaction(GlobalIndexType const &, MaterialPropertyLib::Medium const &, double &)
virtual double getKineticPrefactor(std::size_t reaction_id) const
virtual void computeSecondaryVariable(std::size_t const, std::vector< GlobalIndexType > const &)
virtual void setChemicalSystemConcrete(std::vector< double > const &, GlobalIndexType const &, MaterialPropertyLib::Medium const *, MaterialPropertyLib::VariableArray const &, ParameterLib::SpatialPosition const &, double const, double const)
virtual void updateVolumeFractionPostReaction(GlobalIndexType const &, MaterialPropertyLib::Medium const &, ParameterLib::SpatialPosition const &, double const, double const, double const)
std::vector< GlobalIndexType > chemical_system_index_map
virtual Eigen::SparseMatrix< double > const * getStoichiometricMatrix() const
virtual double getConcentration(int const, GlobalIndexType const) const
virtual void initializeChemicalSystemConcrete(std::vector< double > const &, GlobalIndexType const &, MaterialPropertyLib::Medium const &, ParameterLib::SpatialPosition const &, double const)
Medium * getMedium(std::size_t element_id)
Phase const & phase(std::size_t index) const
Property const & property(PropertyType const &p) const
Component const & component(std::size_t const &index) const
double liquid_phase_pressure
int add(IndexType row, IndexType col, double val)
Global vector based on Eigen vector.
void add(IndexType rowId, double v)
add entry
constexpr double getWeight() const
std::size_t getID() const
Returns the ID of the element.
MathLib::WeightedPoint const & getWeightedPoint(unsigned const igp) const
unsigned getNumberOfPoints() const
MathLib::RowColumnIndices< GlobalIndexType > RowColumnIndices
auto const & NsHigherOrder() const
void setCoordinates(MathLib::Point3d const &coordinates)
void setElementID(std::size_t element_id)
virtual std::vector< double > const & getIntPtDarcyVelocity(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0
virtual void setChemicalSystemConcrete(Eigen::VectorXd const &, double const, double const)=0
virtual void postSpeciationCalculation(std::size_t const ele_id, double const t, double const dt)=0
virtual void computeReactionRelatedSecondaryVariable(std::size_t const ele_id)=0
virtual void setChemicalSystemID(std::size_t const)=0
void initializeChemicalSystem(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t)
void setChemicalSystem(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, double const dt)
virtual void assembleReactionEquationConcrete(double const t, double const dt, Eigen::VectorXd const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data, int const transport_process_id)=0
void assembleReactionEquation(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, double const dt, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, int const process_id)
virtual void initializeChemicalSystemConcrete(Eigen::VectorXd const &, double const)=0
virtual std::vector< double > const & getIntPtMolarFlux(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache, int const component_id) const =0
ComponentTransportLocalAssemblerInterface()=default
typename ShapeMatricesType::GlobalDimVectorType GlobalDimVectorType
void assembleForStaggeredScheme(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
typename ShapeMatricesType::ShapeMatrices ShapeMatrices
MeshLib::Element const & _element
void assembleWithJacobianHydraulicEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
const int first_concentration_index
void assembleHeatTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &)
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > LocalMatrixType
void postTimestepConcrete(Eigen::VectorXd const &, Eigen::VectorXd const &, double const, double const, int const) override
std::vector< double > const & getIntPtMolarFlux(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< double > &cache, int const component_id) const override
void postSpeciationCalculation(std::size_t const ele_id, double const t, double const dt) override
NumLib::GenericIntegrationMethod const & _integration_method
void initializeChemicalSystemConcrete(Eigen::VectorXd const &local_x, double const t) override
void computeReactionRelatedSecondaryVariable(std::size_t const ele_id) override
std::vector< double > const & calculateIntPtDarcyVelocity(const double t, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< const NodalVectorType > const &C_nodal_values, std::vector< double > &cache) const
void assembleBlockMatrices(GlobalDimVectorType const &b, int const component_id, double const t, double const dt, Eigen::Ref< const NodalVectorType > const &C_nodal_values, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< LocalBlockMatrixType > KCC, Eigen::Ref< LocalBlockMatrixType > MCC, Eigen::Ref< LocalBlockMatrixType > MCp, Eigen::Ref< LocalBlockMatrixType > MpC, Eigen::Ref< LocalBlockMatrixType > Kpp, Eigen::Ref< LocalBlockMatrixType > Mpp, Eigen::Ref< LocalSegmentVectorType > Bp)
typename ShapeMatricesType::template MatrixType< pressure_size, pressure_size > LocalBlockMatrixType
typename ShapeMatricesType::GlobalDimMatrixType GlobalDimMatrixType
void assembleWithJacobianForStaggeredScheme(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data) override
static const int temperature_size
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data
ComponentTransportProcessData const & _process_data
Eigen::Map< const Eigen::RowVectorXd > getShapeMatrix(const unsigned integration_point) const override
Provides the shape matrix at the given integration point.
ShapeMatrixPolicyType< ShapeFunction, GlobalDim > ShapeMatricesType
void computeSecondaryVariableConcrete(double const t, double const, Eigen::VectorXd const &local_x, Eigen::VectorXd const &) override
std::vector< std::reference_wrapper< ProcessVariable > > const _transport_process_variables
void assembleHydraulicEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
typename ShapeMatricesType::GlobalDimNodalMatrixType GlobalDimNodalMatrixType
typename ShapeMatricesType::NodalRowVectorType NodalRowVectorType
std::vector< double > const & getIntPtDarcyVelocity(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const override
const int temperature_index
static const int concentration_size
void assembleComponentTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &, int const transport_process_id)
NodalVectorType getLocalTemperature(double const t, Eigen::VectorXd const &local_x)
Eigen::Vector3d getFlux(MathLib::Point3d const &pnt_local_coords, double const t, std::vector< double > const &local_x) const override
GlobalDimMatrixType getThermalConductivityDispersivity(MaterialPropertyLib::VariableArray const &vars, const double fluid_density, const double specific_heat_capacity_fluid, const GlobalDimVectorType &velocity, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
void assemble(double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
void assembleWithJacobianComponentTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data, int const component_id)
Eigen::Matrix< double, Eigen::Dynamic, 1 > LocalVectorType
static const int pressure_size
double getHeatEnergyCoefficient(MaterialPropertyLib::VariableArray const &vars, const double porosity, const double fluid_density, const double specific_heat_capacity_fluid, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
void assembleReactionEquationConcrete(double const t, double const dt, Eigen::VectorXd const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data, int const transport_process_id) override
LocalAssemblerData(MeshLib::Element const &element, std::size_t const local_matrix_size, NumLib::GenericIntegrationMethod const &integration_method, bool is_axially_symmetric, ComponentTransportProcessData const &process_data, std::vector< std::reference_wrapper< ProcessVariable > > const &transport_process_variables)
typename ShapeMatricesType::template VectorType< pressure_size > LocalSegmentVectorType
void assembleKCmCn(int const component_id, double const t, double const dt, Eigen::Ref< LocalBlockMatrixType > KCmCn, double const stoichiometric_coefficient, double const kinetic_prefactor)
static const int pressure_index
void setChemicalSystemConcrete(Eigen::VectorXd const &local_x, double const t, double dt) override
void setChemicalSystemID(std::size_t const) override
typename ShapeMatricesType::NodalVectorType NodalVectorType
Eigen::Matrix< double, GlobalDim, GlobalDim > formEigenTensor(MaterialPropertyLib::PropertyDataType const &values)
@ longitudinal_dispersivity
used to compute the hydrodynamic dispersion tensor.
@ transversal_dispersivity
used to compute the hydrodynamic dispersion tensor.
@ retardation_factor
specify retardation factor used in component transport process.
Eigen::Map< Vector > createZeroedVector(std::vector< double > &data, Eigen::VectorXd::Index size)
Eigen::Map< const Vector > toVector(std::vector< double > const &data, Eigen::VectorXd::Index size)
Creates an Eigen mapped vector from the given data vector.
Eigen::Map< Matrix > createZeroedMatrix(std::vector< double > &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)
Eigen::Map< const Matrix > toMatrix(std::vector< double > const &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)
void shapeFunctionInterpolate(const NodalValues &, const ShapeMatrix &)
void assembleAdvectionMatrix(IPData const &ip_data_vector, NumLib::ShapeMatrixCache const &shape_matrix_cache, std::vector< FluxVectorType > const &ip_flux_vector, Eigen::MatrixBase< Derived > &laplacian_matrix)
std::vector< GlobalIndexType > getIndices(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
std::vector< typename ShapeMatricesType::ShapeMatrices, Eigen::aligned_allocator< typename ShapeMatricesType::ShapeMatrices > > initShapeMatrices(MeshLib::Element const &e, bool const is_axially_symmetric, IntegrationMethod const &integration_method)
std::vector< typename ShapeMatricesType::ShapeMatrices, Eigen::aligned_allocator< typename ShapeMatricesType::ShapeMatrices > > computeShapeMatrices(MeshLib::Element const &e, bool const is_axially_symmetric, PointContainer const &points)
Eigen::MatrixXd computeHydrodynamicDispersion(NumericalStabilization const &stabilizer, std::size_t const element_id, Eigen::MatrixXd const &pore_diffusion_coefficient, Eigen::VectorXd const &velocity, double const porosity, double const solute_dispersivity_transverse, double const solute_dispersivity_longitudinal)
std::array< double, 3 > interpolateCoordinates(MeshLib::Element const &e, typename ShapeMatricesType::ShapeMatrices::ShapeType const &N)
NumLib::ShapeMatrices< NodalRowVectorType, DimNodalMatrixType, DimMatrixType, GlobalDimNodalMatrixType > ShapeMatrices
MatrixType< GlobalDim, ShapeFunction::NPOINTS > GlobalDimNodalMatrixType
MatrixType< GlobalDim, GlobalDim > GlobalDimMatrixType
VectorType< GlobalDim > GlobalDimVectorType
VectorType< ShapeFunction::NPOINTS > NodalVectorType
RowVectorType< ShapeFunction::NPOINTS > NodalRowVectorType
virtual Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > getNodalValuesOnElement(MeshLib::Element const &element, double const t) const
Returns a matrix of values for all nodes of the given element.
NumLib::NumericalStabilization stabilizer
std::vector< Eigen::VectorXd > const projected_specific_body_force_vectors
Projected specific body force vector: R * R^T * b.
MaterialPropertyLib::MaterialSpatialDistributionMap media_map
ChemistryLib::ChemicalSolverInterface *const chemical_solver_interface
static const int hydraulic_process_id
ParameterLib::Parameter< double > const & aperture_size
MeshLib::PropertyVector< double > * mesh_prop_velocity
bool const non_advective_form
NumLib::ShapeMatrixCache shape_matrix_cache
caches for each mesh element type the shape matrix
ParameterLib::Parameter< double > const *const temperature
const int thermal_process_id
bool const chemically_induced_porosity_change
MeshLib::PropertyVector< double > * mesh_prop_porosity
GlobalIndexType chemical_system_id
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
GlobalDimNodalMatrixType const dNdx
IntegrationPointData(GlobalDimNodalMatrixType const &dNdx_, double const &integration_weight_)
double const integration_weight