29 double const t,
double const dt, std::vector<double>
const& local_x,
30 std::vector<double>
const& local_x_prev, std::vector<double>& local_M_data,
31 std::vector<double>& local_K_data, std::vector<double>& local_b_data)
33 auto const local_matrix_size = local_x.size();
35 assert(local_matrix_size == ShapeFunction::NPOINTS *
NUM_NODAL_DOF);
38 local_M_data, local_matrix_size, local_matrix_size);
40 local_K_data, local_matrix_size, local_matrix_size);
42 local_b_data, local_matrix_size);
45 auto Mvv = local_M.template block<velocity_size, velocity_size>(
46 velocity_index, velocity_index);
48 auto Mhp = local_M.template block<enthalpy_size, pressure_size>(
49 enthalpy_index, pressure_index);
50 auto Mhh = local_M.template block<enthalpy_size, enthalpy_size>(
51 enthalpy_index, enthalpy_index);
53 auto Kpv = local_K.template block<pressure_size, velocity_size>(
54 pressure_index, velocity_index);
56 auto Kvp = local_K.template block<velocity_size, pressure_size>(
57 velocity_index, pressure_index);
58 auto Kvv = local_K.template block<velocity_size, velocity_size>(
59 velocity_index, velocity_index);
61 auto Khh = local_K.template block<enthalpy_size, enthalpy_size>(
62 enthalpy_index, enthalpy_index);
64 auto Bp = local_b.template segment<pressure_size>(pressure_index);
65 auto Bv = local_b.template segment<velocity_size>(velocity_index);
66 auto Bh = local_b.template segment<enthalpy_size>(enthalpy_index);
68 unsigned const n_integration_points =
69 _integration_method.getNumberOfPoints();
74 auto const& b = _process_data.specific_body_force;
79 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
80 auto const& liquid_phase = medium.phase(
"AqueousLiquid");
81 auto const& gas_phase = medium.phase(
"Gas");
85 auto const t_ca = _process_data.wellbore.casing_thickness(t, pos)[0];
87 auto const r_w = _process_data.wellbore.diameter(t, pos)[0] / 2;
90 auto const t_p = _process_data.wellbore.pipe_thickness(t, pos)[0];
93 auto const xi = _process_data.wellbore.roughness(t, pos)[0];
95 auto const r_o = r_w - t_ca;
97 auto const r_i = r_o - t_p;
101 _process_data.reservoir_properties.
temperature.getNodalValuesOnElement(
104 _process_data.reservoir_properties.pressure.getNodalValuesOnElement(
107 _process_data.productivity_index.getNodalValuesOnElement(_element, t);
109 _process_data.reservoir_properties.thermal_conductivity(t, pos)[0];
110 auto const rho_r = _process_data.reservoir_properties.density(t, pos)[0];
112 _process_data.reservoir_properties.specific_heat_capacity(t, pos)[0];
114 for (
unsigned ip(0); ip < n_integration_points; ip++)
116 auto& ip_data = _ip_data[ip];
117 auto const& N = ip_data.N;
118 auto const& dNdx = ip_data.dNdx;
119 auto const& w = ip_data.integration_weight;
120 auto& mix_density = ip_data.mix_density;
121 auto& temperature = ip_data.temperature;
122 auto& steam_mass_frac = ip_data.dryness;
123 auto& vapor_volume_frac = ip_data.vapor_volume_fraction;
124 auto& vapor_mass_flowrate = ip_data.vapor_mass_flow_rate;
125 auto& liquid_mass_flowrate = ip_data.liquid_mass_flow_rate;
128 std::nullopt, _element.getID(),
133 double p_int_pt = 0.0;
134 double v_int_pt = 0.0;
135 double h_int_pt = 0.0;
140 double p_prev_int_pt = 0.0;
141 double v_prev_int_pt = 0.0;
142 double h_prev_int_pt = 0.0;
145 v_prev_int_pt, h_prev_int_pt);
147 double vdot_int_pt = (v_int_pt - v_prev_int_pt) / dt;
151 const double pi = std::numbers::pi;
156 double liquid_water_density =
159 .template value<double>(vars, pos, t, dt);
160 double const vapour_water_density =
163 .template value<double>(vars, pos, t, dt);
165 double const h_sat_liq_w =
169 .template value<double>(vars, pos, t, dt);
170 double const h_sat_vap_w =
174 .template value<double>(vars, pos, t, dt);
178 double const dryness = std::max(
179 0., (h_int_pt - h_sat_liq_w) / (h_sat_vap_w - h_sat_liq_w));
180 steam_mass_frac = dryness;
182 double const T_int_pt =
186 .template value<double>(vars, pos, t, dt)
189 saturation_temperature)
190 .template value<double>(vars, pos, t, dt);
191 temperature = T_int_pt;
200 double C_0 = 1 + 0.12 * (1 - dryness);
206 double const sigma_gl = 0.2358 *
207 std::pow((1 - T_int_pt / 647.096), 1.256) *
208 (1 - 0.625 * (1 - T_int_pt / 647.096));
211 1.18 * (1 - dryness) *
212 std::pow((9.81) * sigma_gl *
213 (liquid_water_density - vapour_water_density),
215 std::pow(liquid_water_density, 0.5);
222 using LocalJacobianMatrix =
223 Eigen::Matrix<double, 1, 1, Eigen::RowMajor>;
224 using LocalResidualVector = Eigen::Matrix<double, 1, 1>;
225 using LocalUnknownVector = Eigen::Matrix<double, 1, 1>;
226 LocalJacobianMatrix J_loc;
228 Eigen::PartialPivLU<LocalJacobianMatrix> linear_solver(1);
230 auto const update_residual = [&](LocalResidualVector& residual)
232 calculateResidual(alpha, vapour_water_density,
233 liquid_water_density, v_int_pt, dryness, C_0,
237 auto const update_jacobian = [&](LocalJacobianMatrix& jacobian)
240 alpha, vapour_water_density, liquid_water_density, v_int_pt,
245 auto const update_solution =
246 [&](LocalUnknownVector
const& increment)
249 alpha += increment[0];
252 const int maximum_iterations(20);
253 const double residuum_tolerance(1.e-10);
254 const double increment_tolerance(0);
257 linear_solver, update_jacobian, update_residual,
259 {maximum_iterations, residuum_tolerance, increment_tolerance});
261 auto const success_iterations = newton_solver.
solve(J_loc);
263 if (!success_iterations)
266 "Attention! Steam void fraction has not been correctly "
271 vapor_volume_frac = alpha;
275 liquid_water_density =
278 .template value<double>(vars, pos, t, dt);
282 vapour_water_density * alpha + liquid_water_density * (1 - alpha);
284 auto& mix_density_prev = ip_data.mix_density_prev;
287 auto const rho_dot = (mix_density - mix_density_prev) / dt;
289 double const liquid_water_velocity_act =
290 (alpha == 0) ? v_int_pt
291 : (1 - dryness) * mix_density * v_int_pt /
292 (1 - alpha) / liquid_water_density;
293 double const vapor_water_velocity_act =
295 : dryness * mix_density * v_int_pt /
296 (alpha * vapour_water_density);
298 vapor_mass_flowrate = vapor_water_velocity_act * vapour_water_density *
299 pi * r_i * r_i * alpha;
301 liquid_mass_flowrate = liquid_water_velocity_act *
302 liquid_water_density * pi * r_i * r_i *
310 alpha * liquid_water_density * vapour_water_density * mix_density /
312 std::pow((alpha * C_0 * vapour_water_density +
313 (1 - alpha * C_0) * liquid_water_density),
315 std::pow((C_0 - 1) * v_int_pt + u_gu, 2);
319 .template value<double>(vars, pos, t, dt);
320 double const Re = mix_density * v_int_pt * 2 * r_i / miu;
328 if (Re > 10 && Re <= 2400)
331 f = std::pow(std::log(xi / 3.7 / r_i) -
332 5.02 / Re * std::log(xi / 3.7 / r_i + 13 / Re),
337 double const T_r_int_pt = N.dot(T_r);
339 if (_process_data.has_heat_exchange_with_formation)
344 const double alpha_r = k_r / rho_r / c_r;
345 const double t_d = alpha_r * t / (r_i * r_i);
349 beta = std::pow((pi * t_d), -0.5) + 0.5 -
350 0.25 * std::pow((t_d / pi), 0.5) + 0.125 * t_d;
352 beta = 2 * (1 / (std::log(4 * t_d) - 2 * 0.57722) -
354 std::pow((std::log(4 * t_d) - 2 * 0.57722), 2));
356 const double P_c = 2 * pi * r_i;
357 Q_hx = P_c * k_r * (T_r_int_pt - T_int_pt) / r_i * beta;
361 double const p_r_int_pt = N.dot(p_r);
362 double const PI_int_pt = N.dot(
PI);
363 double Q_mx = PI_int_pt * (p_int_pt - p_r_int_pt);
371 Q_mom = Q_mx * v_int_pt;
376 double const h_fres =
379 .template value<double>(vars, pos, t, dt);
380 Q_ene = Q_mx * h_fres;
384 Mvv.noalias() += w * N.transpose() * mix_density * N;
386 Mhp.noalias() += -w * N.transpose() * N;
387 Mhh.noalias() += w * N.transpose() * mix_density * N;
390 Kpv.noalias() += w * dNdx.transpose() * N * mix_density;
392 Kvp.noalias() += w * N.transpose() * dNdx;
393 Kvv.noalias() += w * N.transpose() * rho_dot * N;
395 Khh.noalias() += w * N.transpose() * mix_density * v_int_pt * dNdx;
398 Bp.noalias() += w * N.transpose() * rho_dot + w * N.transpose() * Q_mx;
401 w * dNdx.transpose() * mix_density * v_int_pt * v_int_pt +
402 w * dNdx.transpose() * gamma -
403 w * N.transpose() * f * mix_density * std::abs(v_int_pt) *
404 v_int_pt / (4 * r_i) -
405 w * N.transpose() * Q_mom;
408 -1 / 2 * w * N.transpose() * rho_dot * v_int_pt * v_int_pt -
409 w * N.transpose() * mix_density * v_int_pt * vdot_int_pt +
410 1 / 2 * w * dNdx.transpose() * mix_density * v_int_pt * v_int_pt *
412 w * N.transpose() * (Q_hx / pi / r_i / r_i) -
413 w * N.transpose() * Q_ene;
415 if (_process_data.has_gravity)
418 N.transpose() * b * w * _element_direction[2];
420 Bv.noalias() += gravity_operator * mix_density;
421 Bh.noalias() += gravity_operator * mix_density * v_int_pt;