29 double const t,
double const dt, std::vector<double>
const& local_x,
30 std::vector<double>
const& local_x_prev, std::vector<double>& local_M_data,
31 std::vector<double>& local_K_data, std::vector<double>& local_b_data)
33 auto const local_matrix_size = local_x.size();
35 assert(local_matrix_size == ShapeFunction::NPOINTS *
NUM_NODAL_DOF);
38 local_M_data, local_matrix_size, local_matrix_size);
40 local_K_data, local_matrix_size, local_matrix_size);
42 local_b_data, local_matrix_size);
45 auto Mvv = local_M.template block<velocity_size, velocity_size>(
46 velocity_index, velocity_index);
48 auto Mhp = local_M.template block<enthalpy_size, pressure_size>(
49 enthalpy_index, pressure_index);
50 auto Mhh = local_M.template block<enthalpy_size, enthalpy_size>(
51 enthalpy_index, enthalpy_index);
53 auto Kpv = local_K.template block<pressure_size, velocity_size>(
54 pressure_index, velocity_index);
56 auto Kvp = local_K.template block<velocity_size, pressure_size>(
57 velocity_index, pressure_index);
58 auto Kvv = local_K.template block<velocity_size, velocity_size>(
59 velocity_index, velocity_index);
61 auto Khh = local_K.template block<enthalpy_size, enthalpy_size>(
62 enthalpy_index, enthalpy_index);
64 auto Bp = local_b.template segment<pressure_size>(pressure_index);
65 auto Bv = local_b.template segment<velocity_size>(velocity_index);
66 auto Bh = local_b.template segment<enthalpy_size>(enthalpy_index);
68 unsigned const n_integration_points =
69 _integration_method.getNumberOfPoints();
74 auto const& b = _process_data.specific_body_force;
79 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
80 auto const& liquid_phase = medium.phase(
"AqueousLiquid");
81 auto const& gas_phase = medium.phase(
"Gas");
85 auto const t_ca = _process_data.wellbore.casing_thickness(t, pos)[0];
87 auto const r_w = _process_data.wellbore.diameter(t, pos)[0] / 2;
90 auto const t_p = _process_data.wellbore.pipe_thickness(t, pos)[0];
93 auto const xi = _process_data.wellbore.roughness(t, pos)[0];
95 auto const r_o = r_w - t_ca;
97 auto const r_i = r_o - t_p;
101 _process_data.reservoir_properties.
temperature.getNodalValuesOnElement(
104 _process_data.reservoir_properties.pressure.getNodalValuesOnElement(
107 _process_data.productivity_index.getNodalValuesOnElement(_element, t);
109 _process_data.reservoir_properties.thermal_conductivity(t, pos)[0];
110 auto const rho_r = _process_data.reservoir_properties.density(t, pos)[0];
112 _process_data.reservoir_properties.specific_heat_capacity(t, pos)[0];
114 for (
unsigned ip(0); ip < n_integration_points; ip++)
118 auto& ip_data = _ip_data[ip];
119 auto const& N = ip_data.N;
120 auto const& dNdx = ip_data.dNdx;
121 auto const& w = ip_data.integration_weight;
122 auto& mix_density = ip_data.mix_density;
123 auto& temperature = ip_data.temperature;
124 auto& steam_mass_frac = ip_data.dryness;
125 auto& vapor_volume_frac = ip_data.vapor_volume_fraction;
126 auto& vapor_mass_flowrate = ip_data.vapor_mass_flow_rate;
127 auto& liquid_mass_flowrate = ip_data.liquid_mass_flow_rate;
129 double p_int_pt = 0.0;
130 double v_int_pt = 0.0;
131 double h_int_pt = 0.0;
136 double p_prev_int_pt = 0.0;
137 double v_prev_int_pt = 0.0;
138 double h_prev_int_pt = 0.0;
141 v_prev_int_pt, h_prev_int_pt);
143 double vdot_int_pt = (v_int_pt - v_prev_int_pt) / dt;
147 const double pi = std::numbers::pi;
152 double liquid_water_density =
155 .template value<double>(vars, pos, t, dt);
156 double const vapour_water_density =
159 .template value<double>(vars, pos, t, dt);
161 double const h_sat_liq_w =
165 .template value<double>(vars, pos, t, dt);
166 double const h_sat_vap_w =
170 .template value<double>(vars, pos, t, dt);
174 double const dryness = std::max(
175 0., (h_int_pt - h_sat_liq_w) / (h_sat_vap_w - h_sat_liq_w));
176 steam_mass_frac = dryness;
178 double const T_int_pt =
182 .template value<double>(vars, pos, t, dt)
185 saturation_temperature)
186 .template value<double>(vars, pos, t, dt);
187 temperature = T_int_pt;
196 double C_0 = 1 + 0.12 * (1 - dryness);
202 double const sigma_gl = 0.2358 *
203 std::pow((1 - T_int_pt / 647.096), 1.256) *
204 (1 - 0.625 * (1 - T_int_pt / 647.096));
207 1.18 * (1 - dryness) *
208 std::pow((9.81) * sigma_gl *
209 (liquid_water_density - vapour_water_density),
211 std::pow(liquid_water_density, 0.5);
218 using LocalJacobianMatrix =
219 Eigen::Matrix<double, 1, 1, Eigen::RowMajor>;
220 using LocalResidualVector = Eigen::Matrix<double, 1, 1>;
221 using LocalUnknownVector = Eigen::Matrix<double, 1, 1>;
222 LocalJacobianMatrix J_loc;
224 Eigen::PartialPivLU<LocalJacobianMatrix> linear_solver(1);
226 auto const update_residual = [&](LocalResidualVector& residual)
228 calculateResidual(alpha, vapour_water_density,
229 liquid_water_density, v_int_pt, dryness, C_0,
233 auto const update_jacobian = [&](LocalJacobianMatrix& jacobian)
236 alpha, vapour_water_density, liquid_water_density, v_int_pt,
241 auto const update_solution =
242 [&](LocalUnknownVector
const& increment)
245 alpha += increment[0];
248 const int maximum_iterations(20);
249 const double residuum_tolerance(1.e-10);
250 const double increment_tolerance(0);
253 linear_solver, update_jacobian, update_residual,
255 {maximum_iterations, residuum_tolerance, increment_tolerance});
257 auto const success_iterations = newton_solver.
solve(J_loc);
259 if (!success_iterations)
262 "Attention! Steam void fraction has not been correctly "
267 vapor_volume_frac = alpha;
271 liquid_water_density =
274 .template value<double>(vars, pos, t, dt);
278 vapour_water_density * alpha + liquid_water_density * (1 - alpha);
280 auto& mix_density_prev = ip_data.mix_density_prev;
283 auto const rho_dot = (mix_density - mix_density_prev) / dt;
285 double const liquid_water_velocity_act =
286 (alpha == 0) ? v_int_pt
287 : (1 - dryness) * mix_density * v_int_pt /
288 (1 - alpha) / liquid_water_density;
289 double const vapor_water_velocity_act =
291 : dryness * mix_density * v_int_pt /
292 (alpha * vapour_water_density);
294 vapor_mass_flowrate = vapor_water_velocity_act * vapour_water_density *
295 pi * r_i * r_i * alpha;
297 liquid_mass_flowrate = liquid_water_velocity_act *
298 liquid_water_density * pi * r_i * r_i *
306 alpha * liquid_water_density * vapour_water_density * mix_density /
308 std::pow((alpha * C_0 * vapour_water_density +
309 (1 - alpha * C_0) * liquid_water_density),
311 std::pow((C_0 - 1) * v_int_pt + u_gu, 2);
315 .template value<double>(vars, pos, t, dt);
316 double const Re = mix_density * v_int_pt * 2 * r_i / miu;
324 if (Re > 10 && Re <= 2400)
327 f = std::pow(std::log(xi / 3.7 / r_i) -
328 5.02 / Re * std::log(xi / 3.7 / r_i + 13 / Re),
333 double const T_r_int_pt = N.dot(T_r);
335 if (_process_data.has_heat_exchange_with_formation)
340 const double alpha_r = k_r / rho_r / c_r;
341 const double t_d = alpha_r * t / (r_i * r_i);
345 beta = std::pow((pi * t_d), -0.5) + 0.5 -
346 0.25 * std::pow((t_d / pi), 0.5) + 0.125 * t_d;
348 beta = 2 * (1 / (std::log(4 * t_d) - 2 * 0.57722) -
350 std::pow((std::log(4 * t_d) - 2 * 0.57722), 2));
352 const double P_c = 2 * pi * r_i;
353 Q_hx = P_c * k_r * (T_r_int_pt - T_int_pt) / r_i * beta;
357 double const p_r_int_pt = N.dot(p_r);
358 double const PI_int_pt = N.dot(
PI);
359 double Q_mx = PI_int_pt * (p_int_pt - p_r_int_pt);
367 Q_mom = Q_mx * v_int_pt;
372 double const h_fres =
375 .template value<double>(vars, pos, t, dt);
376 Q_ene = Q_mx * h_fres;
380 Mvv.noalias() += w * N.transpose() * mix_density * N;
382 Mhp.noalias() += -w * N.transpose() * N;
383 Mhh.noalias() += w * N.transpose() * mix_density * N;
386 Kpv.noalias() += w * dNdx.transpose() * N * mix_density;
388 Kvp.noalias() += w * N.transpose() * dNdx;
389 Kvv.noalias() += w * N.transpose() * rho_dot * N;
391 Khh.noalias() += w * N.transpose() * mix_density * v_int_pt * dNdx;
394 Bp.noalias() += w * N.transpose() * rho_dot + w * N.transpose() * Q_mx;
397 w * dNdx.transpose() * mix_density * v_int_pt * v_int_pt +
398 w * dNdx.transpose() * gamma -
399 w * N.transpose() * f * mix_density * std::abs(v_int_pt) *
400 v_int_pt / (4 * r_i) -
401 w * N.transpose() * Q_mom;
404 -1 / 2 * w * N.transpose() * rho_dot * v_int_pt * v_int_pt -
405 w * N.transpose() * mix_density * v_int_pt * vdot_int_pt +
406 1 / 2 * w * dNdx.transpose() * mix_density * v_int_pt * v_int_pt *
408 w * N.transpose() * (Q_hx / pi / r_i / r_i) -
409 w * N.transpose() * Q_ene;
411 if (_process_data.has_gravity)
414 N.transpose() * b * w * _element_direction[2];
416 Bv.noalias() += gravity_operator * mix_density;
417 Bh.noalias() += gravity_operator * mix_density * v_int_pt;