OGS
m16m15projectB.prj
<
OpenGeoSysProject
>
<
meshes
>
<
mesh
axially_symmetric
="true">m16m15mesh.vtu</mesh>
<
mesh
axially_symmetric
="true">m16m15mesh_0.vtu</mesh>
<
mesh
axially_symmetric
="true">m16m15mesh_1.vtu</mesh>
<
mesh
axially_symmetric
="true">m16m15mesh_2.vtu</mesh>
<
mesh
axially_symmetric
="true">m16m15mesh_3.vtu</mesh>
<
mesh
axially_symmetric
="true">m16m15mesh_4.vtu</mesh>
<
mesh
axially_symmetric
="true">m16m15mesh_5.vtu</mesh>
<
mesh
axially_symmetric
="true">m16m15mesh_6.vtu</mesh>
</meshes>
<
processes
>
<
process
>
<
name
>HeatConduction</name>
<
type
>
HEAT_CONDUCTION
</type>
<
integration_order
>2</integration_order>
<
process_variables
>
<
process_variable
>temperature</process_variable>
</process_variables>
<
secondary_variables
>
<
secondary_variable
name="heat_flux" />
</secondary_variables>
</process>
</processes>
<
media
>
<
medium
id
="0,1">
<
phases
>
<
phase
>
<
type
>
AqueousLiquid
</type>
<
properties
>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>0.58</value>
</property>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>4190</value>
</property>
<
property
>
<
name
>density</name>
<
type
>
Constant
</type>
<
value
>1000</value>
</property>
</properties>
</phase>
<
phase
>
<
type
>
FrozenLiquid
</type>
<
properties
>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>2.2</value>
</property>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>2090</value>
</property>
<
property
>
<
name
>density</name>
<
type
>
Constant
</type>
<
value
>920</value>
</property>
</properties>
</phase>
<
phase
>
<
type
>
Solid
</type>
<
properties
>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>1.1</value>
</property>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>900</value>
</property>
<
property
>
<
name
>density</name>
<
type
>
Constant
</type>
<
value
>2000</value>
</property>
</properties>
</phase>
</phases>
<
properties
>
<
property
>
<
name
>porosity</name>
<
type
>
Constant
</type>
<
value
>0.5</value>
</property>
<
property
>
<
name
>volume_fraction</name>
<
type
>
TemperatureDependentFraction
</type>
<
steepness
>2</steepness>
<
characteristic_temperature
>273.15</characteristic_temperature>
</property>
<
property
>
<
name
>density</name>
<
type
>
VolumeFractionAverage
</type>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
VolumeFractionAverage
</type>
</property>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
SpecificHeatCapacityWithLatentHeat
</type>
<
specific_latent_heat
>334000</specific_latent_heat>
</property>
</properties>
</medium>
</media>
<
parameters
>
<
parameter
>
<
name
>T0</name>
<
type
>
Function
</type>
<
expression
>5.
/
16*y+293.15</expression>
</parameter>
<
parameter
>
<
name
>T10</name>
<
type
>
Function
</type>
<
expression
>if (t < 36000, 5.
/
16*(1-t
/
36000)*y+35.
/
10*t
/
36000*y+293.15, 35.
/
10*y+293.15)</expression>
</parameter>
<
parameter
>
<
name
>T11</name>
<
type
>
Function
</type>
<
expression
>if (t < 36000, 5.
/
16*(1-t
/
36000)*y-35*t
/
36000+293.15, 258.15)</expression>
</parameter>
</parameters>
<
process_variables
>
<
process_variable
>
<
name
>temperature</name>
<
components
>1</components>
<
order
>1</order>
<
initial_condition
>T0</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>m16m15mesh_0</mesh>
<
type
>
Dirichlet
</type>
<
parameter
>T10</parameter>
</boundary_condition>
<
boundary_condition
>
<
mesh
>m16m15mesh_1</mesh>
<
type
>
Dirichlet
</type>
<
parameter
>T11</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
</process_variables>
<
time_loop
>
<
processes
>
<
process
ref
="HeatConduction">
<
nonlinear_solver
>basic_picard</nonlinear_solver>
<
convergence_criterion
>
<
type
>
DeltaX
</type>
<
norm_type
>NORM2</norm_type>
<
abstol
>1.e-4</abstol>
</convergence_criterion>
<
time_discretization
>
<
type
>
BackwardEuler
</type>
</time_discretization>
<
time_stepping
>
<
type
>
FixedTimeStepping
</type>
<
t_initial
>0.0</t_initial>
<
t_end
>36000</t_end>
<
timesteps
>
<
pair
>
<
repeat
>40</repeat>
<
delta_t
>900</delta_t>
</pair>
</timesteps>
</time_stepping>
</process>
</processes>
<
output
>
<
type
>
VTK
</type>
<
prefix
>Kiel_problem_T-plot</prefix>
<
timesteps
>
<
pair
>
<
repeat
>10000</repeat>
<
each_steps
>10</each_steps>
</pair>
</timesteps>
<
variables
>
<
variable
>temperature</variable>
<
variable
>heat_flux</variable>
</variables>
<
suffix
>
ts
{:timestep}_t_{:gtime}_sec</suffix>
</output>
</time_loop>
<
nonlinear_solvers
>
<
nonlinear_solver
>
<
name
>basic_picard</name>
<
type
>
Picard
</type>
<
max_iter
>200</max_iter>
<
linear_solver
>general_linear_solver</linear_solver>
</nonlinear_solver>
</nonlinear_solvers>
<
linear_solvers
>
<
linear_solver
>
<
name
>general_linear_solver</name>
<
eigen
>
<
solver_type
>SparseLU</solver_type>
<
precon_type
>DIAGONAL</precon_type>
</eigen>
</linear_solver>
</linear_solvers>
<
test_definition
>
<
vtkdiff
>
<
file
>Kiel_problem_T-plot_ts_20_t_18000_sec.vtu</file>
<
field
>temperature</field>
<
absolute_tolerance
>1e-8</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
file
>Kiel_problem_T-plot_ts_40_t_36000_sec.vtu</file>
<
field
>temperature</field>
<
absolute_tolerance
>1e-8</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
</test_definition>
</OpenGeoSysProject>
OGS CTests—Project Files
Parabolic
T
2D_Soil_freezing_round_BHE
Generated by
1.14.0