OGS
|
<OpenGeoSysProject>
<meshes>
<mesh axially_symmetric="true">m16m15mesh.vtu</mesh>
<mesh axially_symmetric="true">m16m15mesh_0.vtu</mesh>
<mesh axially_symmetric="true">m16m15mesh_1.vtu</mesh>
<mesh axially_symmetric="true">m16m15mesh_2.vtu</mesh>
<mesh axially_symmetric="true">m16m15mesh_3.vtu</mesh>
<mesh axially_symmetric="true">m16m15mesh_4.vtu</mesh>
<mesh axially_symmetric="true">m16m15mesh_5.vtu</mesh>
<mesh axially_symmetric="true">m16m15mesh_6.vtu</mesh>
</meshes>
<processes>
<process>
<name>HeatConduction</name>
<type>HEAT_CONDUCTION</type>
<integration_order>2</integration_order>
<process_variables>
<process_variable>temperature</process_variable>
</process_variables>
<secondary_variables>
<secondary_variable internal_name="heat_flux" output_name="heat_flux" />
</secondary_variables>
</process>
</processes>
<media>
<medium id="0,1">
<phases>
<phase>
<type>AqueousLiquid</type>
<properties>
<property>
<name>thermal_conductivity</name>
<type>Constant</type>
<value>0.58</value>
</property>
<property>
<name>specific_heat_capacity</name>
<type>Constant</type>
<value>4190</value>
</property>
<property>
<name>density</name>
<type>Constant</type>
<value>1000</value>
</property>
</properties>
</phase>
<phase>
<type>FrozenLiquid</type>
<properties>
<property>
<name>thermal_conductivity</name>
<type>Constant</type>
<value>2.2</value>
</property>
<property>
<name>specific_heat_capacity</name>
<type>Constant</type>
<value>2090</value>
</property>
<property>
<name>density</name>
<type>Constant</type>
<value>920</value>
</property>
</properties>
</phase>
<phase>
<type>Solid</type>
<properties>
<property>
<name>thermal_conductivity</name>
<type>Constant</type>
<value>1.1</value>
</property>
<property>
<name>specific_heat_capacity</name>
<type>Constant</type>
<value>900</value>
</property>
<property>
<name>density</name>
<type>Constant</type>
<value>2000</value>
</property>
</properties>
</phase>
</phases>
<properties>
<property>
<name>porosity</name>
<type>Constant</type>
<value>0.5</value>
</property>
<property>
<name>volume_fraction</name>
<type>TemperatureDependentFraction</type>
<steepness>2</steepness>
<characteristic_temperature>273.15</characteristic_temperature>
</property>
<property>
<name>density</name>
<type>VolumeFractionAverage</type>
</property>
<property>
<name>thermal_conductivity</name>
<type>VolumeFractionAverage</type>
</property>
<property>
<name>specific_heat_capacity</name>
<type>SpecificHeatCapacityWithLatentHeat</type>
<specific_latent_heat>334000</specific_latent_heat>
</property>
</properties>
</medium>
</media>
<parameters>
<parameter>
<name>T0</name>
<type>Function</type>
<expression>5./16*y+293.15</expression>
</parameter>
<parameter>
<name>T10</name>
<type>Function</type>
<expression>if (t < 36000, 5./16*(1-t/36000)*y+35./10*t/36000*y+293.15, 35./10*y+293.15)</expression>
</parameter>
<parameter>
<name>T11</name>
<type>Function</type>
<expression>if (t < 36000, 5./16*(1-t/36000)*y-35*t/36000+293.15, 258.15)</expression>
</parameter>
</parameters>
<process_variables>
<process_variable>
<name>temperature</name>
<components>1</components>
<order>1</order>
<initial_condition>T0</initial_condition>
<boundary_conditions>
<boundary_condition>
<mesh>m16m15mesh_0</mesh>
<type>Dirichlet</type>
<parameter>T10</parameter>
</boundary_condition>
<boundary_condition>
<mesh>m16m15mesh_1</mesh>
<type>Dirichlet</type>
<parameter>T11</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
</process_variables>
<time_loop>
<processes>
<process ref="HeatConduction">
<nonlinear_solver>basic_picard</nonlinear_solver>
<convergence_criterion>
<type>DeltaX</type>
<norm_type>NORM2</norm_type>
<abstol>1.e-4</abstol>
</convergence_criterion>
<time_discretization>
<type>BackwardEuler</type>
</time_discretization>
<time_stepping>
<type>FixedTimeStepping</type>
<t_initial>0.0</t_initial>
<t_end>36000</t_end>
<timesteps>
<pair>
<repeat>40</repeat>
<delta_t>900</delta_t>
</pair>
</timesteps>
</time_stepping>
</process>
</processes>
<output>
<type>VTK</type>
<prefix>Kiel_problem_T-plot</prefix>
<timesteps>
<pair>
<repeat>10000</repeat>
<each_steps>10</each_steps>
</pair>
</timesteps>
<variables>
<variable>temperature</variable>
<variable>heat_flux</variable>
</variables>
<suffix>ts{:timestep}_t_{:gtime}_sec</suffix>
</output>
</time_loop>
<nonlinear_solvers>
<nonlinear_solver>
<name>basic_picard</name>
<type>Picard</type>
<max_iter>200</max_iter>
<linear_solver>general_linear_solver</linear_solver>
</nonlinear_solver>
</nonlinear_solvers>
<linear_solvers>
<linear_solver>
<name>general_linear_solver</name>
<eigen>
<solver_type>SparseLU</solver_type>
<precon_type>DIAGONAL</precon_type>
</eigen>
</linear_solver>
</linear_solvers>
<test_definition>
<vtkdiff>
<file>Kiel_problem_T-plot_ts_20_t_18000_sec.vtu</file>
<field>temperature</field>
<absolute_tolerance>1e-8</absolute_tolerance>
<relative_tolerance>0</relative_tolerance>
</vtkdiff>
<vtkdiff>
<file>Kiel_problem_T-plot_ts_40_t_36000_sec.vtu</file>
<field>temperature</field>
<absolute_tolerance>1e-8</absolute_tolerance>
<relative_tolerance>0</relative_tolerance>
</vtkdiff>
</test_definition>
</OpenGeoSysProject>