OGS
m16m15projectB.prj
<OpenGeoSysProject>
  <meshes>
    <mesh axially_symmetric="true">m16m15mesh.vtu</mesh>
    <mesh axially_symmetric="true">m16m15mesh_0.vtu</mesh>
    <mesh axially_symmetric="true">m16m15mesh_1.vtu</mesh>
    <mesh axially_symmetric="true">m16m15mesh_2.vtu</mesh>
    <mesh axially_symmetric="true">m16m15mesh_3.vtu</mesh>
    <mesh axially_symmetric="true">m16m15mesh_4.vtu</mesh>
    <mesh axially_symmetric="true">m16m15mesh_5.vtu</mesh>
    <mesh axially_symmetric="true">m16m15mesh_6.vtu</mesh>
  </meshes>
  <processes>
    <process>
      <name>HeatConduction</name>
      <type>HEAT_CONDUCTION</type>
      <integration_order>2</integration_order>
      <process_variables>
        <process_variable>temperature</process_variable>
      </process_variables>
      <secondary_variables>
        <secondary_variable internal_name="heat_flux" output_name="heat_flux" />
      </secondary_variables>
    </process>
  </processes>
  <media>
    <medium id="0,1">
      <phases>
        <phase>
          <type>AqueousLiquid</type>
          <properties>
            <property>
              <name>thermal_conductivity</name>
              <type>Constant</type>
              <value>0.58</value>
            </property>
            <property>
              <name>specific_heat_capacity</name>
              <type>Constant</type>
              <value>4190</value>
            </property>
            <property>
              <name>density</name>
              <type>Constant</type>
              <value>1000</value>
            </property>
          </properties>
        </phase>
        <phase>
          <type>FrozenLiquid</type>
          <properties>
            <property>
              <name>thermal_conductivity</name>
              <type>Constant</type>
              <value>2.2</value>
            </property>
            <property>
              <name>specific_heat_capacity</name>
              <type>Constant</type>
              <value>2090</value>
            </property>
            <property>
              <name>density</name>
              <type>Constant</type>
              <value>920</value>
            </property>
          </properties>
        </phase>
        <phase>
          <type>Solid</type>
          <properties>
            <property>
              <name>thermal_conductivity</name>
              <type>Constant</type>
              <value>1.1</value>
            </property>
            <property>
              <name>specific_heat_capacity</name>
              <type>Constant</type>
              <value>900</value>
            </property>
            <property>
              <name>density</name>
              <type>Constant</type>
              <value>2000</value>
            </property>
          </properties>
        </phase>
      </phases>
      <properties>
        <property>
          <name>porosity</name>
          <type>Constant</type>
          <value>0.5</value>
        </property>
        <property>
          <name>volume_fraction</name>
          <type>TemperatureDependentFraction</type>
          <steepness>2</steepness>
          <characteristic_temperature>273.15</characteristic_temperature>
        </property>
        <property>
          <name>density</name>
          <type>VolumeFractionAverage</type>
        </property>
        <property>
          <name>thermal_conductivity</name>
          <type>VolumeFractionAverage</type>
        </property>
        <property>
          <name>specific_heat_capacity</name>
          <type>SpecificHeatCapacityWithLatentHeat</type>
          <specific_latent_heat>334000</specific_latent_heat>
        </property>
      </properties>
    </medium>
  </media>
  <parameters>
    <parameter>
      <name>T0</name>
      <type>Function</type>
      <expression>5./16*y+293.15</expression>
    </parameter>
    <parameter>
      <name>T10</name>
      <type>Function</type>
      <expression>if (t < 36000, 5./16*(1-t/36000)*y+35./10*t/36000*y+293.15, 35./10*y+293.15)</expression>
    </parameter>
    <parameter>
      <name>T11</name>
      <type>Function</type>
      <expression>if (t < 36000, 5./16*(1-t/36000)*y-35*t/36000+293.15, 258.15)</expression>
    </parameter>
  </parameters>
  <process_variables>
    <process_variable>
      <name>temperature</name>
      <components>1</components>
      <order>1</order>
      <initial_condition>T0</initial_condition>
      <boundary_conditions>
        <boundary_condition>
          <mesh>m16m15mesh_0</mesh>
          <type>Dirichlet</type>
          <parameter>T10</parameter>
        </boundary_condition>
        <boundary_condition>
          <mesh>m16m15mesh_1</mesh>
          <type>Dirichlet</type>
          <parameter>T11</parameter>
        </boundary_condition>
      </boundary_conditions>
    </process_variable>
  </process_variables>
  <time_loop>
    <processes>
      <process ref="HeatConduction">
        <nonlinear_solver>basic_picard</nonlinear_solver>
        <convergence_criterion>
          <type>DeltaX</type>
          <norm_type>NORM2</norm_type>
          <abstol>1.e-4</abstol>
        </convergence_criterion>
        <time_discretization>
          <type>BackwardEuler</type>
        </time_discretization>
        <time_stepping>
          <type>FixedTimeStepping</type>
          <t_initial>0.0</t_initial>
          <t_end>36000</t_end>
          <timesteps>
            <pair>
              <repeat>40</repeat>
              <delta_t>900</delta_t>
            </pair>
          </timesteps>
        </time_stepping>
      </process>
    </processes>
    <output>
      <type>VTK</type>
      <prefix>Kiel_problem_T-plot</prefix>
      <timesteps>
        <pair>
          <repeat>10000</repeat>
          <each_steps>10</each_steps>
        </pair>
      </timesteps>
      <variables>
        <variable>temperature</variable>
        <variable>heat_flux</variable>
      </variables>
      <suffix>ts{:timestep}_t_{:gtime}_sec</suffix>
    </output>
  </time_loop>
  <nonlinear_solvers>
    <nonlinear_solver>
      <name>basic_picard</name>
      <type>Picard</type>
      <max_iter>200</max_iter>
      <linear_solver>general_linear_solver</linear_solver>
    </nonlinear_solver>
  </nonlinear_solvers>
  <linear_solvers>
    <linear_solver>
      <name>general_linear_solver</name>
      <eigen>
        <solver_type>SparseLU</solver_type>
        <precon_type>DIAGONAL</precon_type>
      </eigen>
    </linear_solver>
  </linear_solvers>
  <test_definition>
    <vtkdiff>
      <file>Kiel_problem_T-plot_ts_20_t_18000_sec.vtu</file>
      <field>temperature</field>
      <absolute_tolerance>1e-8</absolute_tolerance>
      <relative_tolerance>0</relative_tolerance>
    </vtkdiff>
    <vtkdiff>
      <file>Kiel_problem_T-plot_ts_40_t_36000_sec.vtu</file>
      <field>temperature</field>
      <absolute_tolerance>1e-8</absolute_tolerance>
      <relative_tolerance>0</relative_tolerance>
    </vtkdiff>
  </test_definition>
</OpenGeoSysProject>