44 ShapeFunctionPressure, GlobalDim>::
45 HydroMechanicsLocalAssemblerFracture(
48 std::vector<unsigned>
const& dofIndex_to_localIndex,
50 bool const is_axially_symmetric,
53 e, is_axially_symmetric, integration_method,
54 ShapeFunctionDisplacement::NPOINTS * GlobalDim +
55 ShapeFunctionPressure::NPOINTS,
56 dofIndex_to_localIndex),
57 _process_data(process_data)
61 unsigned const n_integration_points =
64 _ip_data.reserve(n_integration_points);
67 auto const shape_matrices_u =
70 e, is_axially_symmetric, integration_method);
72 auto const shape_matrices_p =
75 e, is_axially_symmetric, integration_method);
82 aperture0_node_values = frac_prop.aperture0.getNodalValuesOnElement(
87 for (
unsigned ip = 0; ip < n_integration_points; ip++)
92 auto const& sm_u = shape_matrices_u[ip];
93 auto const& sm_p = shape_matrices_p[ip];
95 ip_data.integration_weight =
96 sm_u.detJ * sm_u.integralMeasure *
99 ip_data.H_u.setZero(GlobalDim,
100 ShapeFunctionDisplacement::NPOINTS * GlobalDim);
102 GlobalDim, ShapeFunctionDisplacement::NPOINTS,
105 ip_data.N_p = sm_p.N;
106 ip_data.dNdx_p = sm_p.dNdx;
111 ip_data.w.setZero(GlobalDim);
112 ip_data.sigma_eff.setZero(GlobalDim);
115 ip_data.w_prev.resize(GlobalDim);
116 ip_data.sigma_eff_prev.resize(GlobalDim);
118 ip_data.C.resize(GlobalDim, GlobalDim);
120 ip_data.aperture0 = aperture0_node_values.dot(sm_u.N);
121 ip_data.aperture = ip_data.aperture0;
123 auto const initial_effective_stress =
124 _process_data.initial_fracture_effective_stress(0, x_position);
125 for (
int i = 0; i < GlobalDim; i++)
127 ip_data.sigma_eff[i] = initial_effective_stress[i];
128 ip_data.sigma_eff_prev[i] = initial_effective_stress[i];
136 ShapeFunctionPressure, GlobalDim>::
137 assembleWithJacobianConcrete(
double const t,
double const dt,
138 Eigen::VectorXd
const& local_x,
139 Eigen::VectorXd
const& local_x_prev,
140 Eigen::VectorXd& local_b,
141 Eigen::MatrixXd& local_J)
143 auto const p = local_x.segment(pressure_index, pressure_size);
144 auto const p_prev = local_x_prev.segment(pressure_index, pressure_size);
145 auto const g = local_x.segment(displacement_index, displacement_size);
147 local_x_prev.segment(displacement_index, displacement_size);
149 auto rhs_p = local_b.segment(pressure_index, pressure_size);
150 auto rhs_g = local_b.segment(displacement_index, displacement_size);
151 auto J_pp = local_J.block(pressure_index, pressure_index, pressure_size,
153 auto J_pg = local_J.block(pressure_index, displacement_index, pressure_size,
155 auto J_gp = local_J.block(displacement_index, pressure_index,
156 displacement_size, pressure_size);
157 auto J_gg = local_J.block(displacement_index, displacement_index,
158 displacement_size, displacement_size);
160 assembleBlockMatricesWithJacobian(t, dt, p, p_prev, g, g_prev, rhs_p, rhs_g,
161 J_pp, J_pg, J_gg, J_gp);
167 ShapeFunctionPressure, GlobalDim>::
168 assembleBlockMatricesWithJacobian(
169 double const t,
double const dt,
170 Eigen::Ref<const Eigen::VectorXd>
const& p,
171 Eigen::Ref<const Eigen::VectorXd>
const& p_prev,
172 Eigen::Ref<const Eigen::VectorXd>
const& g,
173 Eigen::Ref<const Eigen::VectorXd>
const& g_prev,
174 Eigen::Ref<Eigen::VectorXd> rhs_p, Eigen::Ref<Eigen::VectorXd> rhs_g,
175 Eigen::Ref<Eigen::MatrixXd> J_pp, Eigen::Ref<Eigen::MatrixXd> J_pg,
176 Eigen::Ref<Eigen::MatrixXd> J_gg, Eigen::Ref<Eigen::MatrixXd> J_gp)
178 auto const& frac_prop = *_process_data.fracture_property;
179 auto const& R = frac_prop.R;
183 auto constexpr index_normal = GlobalDim - 1;
186 ShapeMatricesTypePressure::NodalMatrixType::Zero(pressure_size,
190 ShapeMatricesTypePressure::NodalMatrixType::Zero(pressure_size,
193 typename ShapeMatricesTypeDisplacement::template MatrixType<
194 displacement_size, pressure_size>
195 Kgp = ShapeMatricesTypeDisplacement::template MatrixType<
196 displacement_size, pressure_size>::Zero(displacement_size,
200 Eigen::MatrixXd
const global2local_rotation =
201 R.template topLeftCorner<ShapeFunctionPressure::DIM, GlobalDim>();
204 global2local_rotation *
205 _process_data.specific_body_force;
211 auto const& medium = _process_data.media_map.getMedium(_element.getID());
212 auto const& liquid_phase = medium->phase(
"AqueousLiquid");
214 medium->property(MPL::PropertyType::reference_temperature)
215 .template value<double>(variables, x_position, t, dt);
218 unsigned const n_integration_points = _ip_data.size();
219 for (
unsigned ip = 0; ip < n_integration_points; ip++)
223 auto& ip_data = _ip_data[ip];
224 auto const& ip_w = ip_data.integration_weight;
225 auto const& N_p = ip_data.N_p;
226 auto const& dNdx_p = ip_data.dNdx_p;
227 auto const& H_g = ip_data.H_u;
228 auto const& identity2 =
231 auto& mat = ip_data.fracture_material;
232 auto& effective_stress = ip_data.sigma_eff;
233 auto const& effective_stress_prev = ip_data.sigma_eff_prev;
235 auto const& w_prev = ip_data.w_prev;
237 auto& state = *ip_data.material_state_variables;
238 auto& b_m = ip_data.aperture;
241 liquid_phase.property(MPL::PropertyType::density)
242 .template value<double>(variables, x_position, t, dt);
246 medium->property(MPL::PropertyType::biot_coefficient)
247 .template value<double>(variables, x_position, t, dt);
250 medium->property(MPL::PropertyType::storage)
251 .template value<double>(variables, x_position, t, dt);
254 liquid_phase.property(MPL::PropertyType::viscosity)
255 .template value<double>(variables, x_position, t, dt);
258 w.noalias() = R * H_g * g;
261 b_m = ip_data.aperture0 + w[index_normal];
265 "Element {:d}, gp {:d}: Fracture aperture is {:g}, but it must "
267 "non-negative. Setting it to zero.",
268 _element.getID(), ip, b_m);
272 auto const initial_effective_stress =
273 _process_data.initial_fracture_effective_stress(0, x_position);
275 Eigen::Map<typename HMatricesType::ForceVectorType const>
const stress0(
276 initial_effective_stress.data(), initial_effective_stress.size());
279 mat.computeConstitutiveRelation(
280 t, x_position, ip_data.aperture0, stress0, w_prev, w,
281 effective_stress_prev, effective_stress, C, state);
287 H_g.transpose() * R.transpose() * effective_stress * ip_w;
288 J_gg.noalias() += H_g.transpose() * R.transpose() * C * R * H_g * ip_w;
294 H_g.transpose() * R.transpose() * alpha * identity2 * N_p * ip_w;
302 auto const permeability =
303 medium->property(MPL::PropertyType::permeability)
304 .value(variables, x_position, t, dt);
306 auto& k = ip_data.permeability;
307 k = std::get<double>(permeability);
308 double const k_over_mu = k / mu;
309 storage_p.noalias() += N_p.transpose() * b_m * S * N_p * ip_w;
310 laplace_p.noalias() +=
311 dNdx_p.transpose() * b_m * k_over_mu * dNdx_p * ip_w;
313 dNdx_p.transpose() * b_m * k_over_mu * rho_fr * gravity_vec * ip_w;
319 Eigen::Matrix<double, 1, displacement_size>
const mT_R_Hg =
320 identity2.transpose() * R * H_g;
322 ip_data.darcy_velocity = -k_over_mu * grad_head;
324 N_p.transpose() * S * N_p * (p - p_prev) / dt * mT_R_Hg * ip_w;
327 double const dk_db_over_mu =
328 medium->property(MPL::PropertyType::permeability)
329 .template dValue<double>(variables,
330 MPL::Variable::fracture_aperture,
334 dNdx_p.transpose() * k_over_mu * grad_head * mT_R_Hg * ip_w;
335 J_pg.noalias() += dNdx_p.transpose() * b_m * dk_db_over_mu * grad_head *
340 J_gp.noalias() -= Kgp;
343 J_pp.noalias() += laplace_p + storage_p / dt;
346 J_pg.noalias() += Kgp.transpose() / dt;
349 rhs_p.noalias() -= laplace_p * p + storage_p * (p - p_prev) / dt +
350 Kgp.transpose() * (g - g_prev) / dt;
353 rhs_g.noalias() -= -Kgp * p;
360 GlobalDim>::postTimestepConcreteWithVector(
const double t,
362 Eigen::VectorXd
const& local_x)
364 auto const nodal_g = local_x.segment(displacement_index, displacement_size);
366 auto const& frac_prop = *_process_data.fracture_property;
367 auto const& R = frac_prop.R;
370 auto constexpr index_normal = GlobalDim - 1;
373 auto const e_id = _element.getID();
376 unsigned const n_integration_points = _ip_data.size();
377 for (
unsigned ip = 0; ip < n_integration_points; ip++)
381 auto& ip_data = _ip_data[ip];
382 auto const& H_g = ip_data.H_u;
383 auto& mat = ip_data.fracture_material;
384 auto& effective_stress = ip_data.sigma_eff;
385 auto const& effective_stress_prev = ip_data.sigma_eff_prev;
387 auto const& w_prev = ip_data.w_prev;
389 auto& state = *ip_data.material_state_variables;
390 auto& b_m = ip_data.aperture;
393 w.noalias() = R * H_g * nodal_g;
396 b_m = ip_data.aperture0 + w[index_normal];
400 "Element {:d}, gp {:d}: Fracture aperture is {:g}, but it is "
401 "expected to be non-negative. Setting it to zero now.",
402 _element.getID(), ip, b_m);
406 auto const initial_effective_stress =
407 _process_data.initial_fracture_effective_stress(0, x_position);
409 Eigen::Map<typename HMatricesType::ForceVectorType const>
const stress0(
410 initial_effective_stress.data(), initial_effective_stress.size());
413 mat.computeConstitutiveRelation(
414 t, x_position, ip_data.aperture0, stress0, w_prev, w,
415 effective_stress_prev, effective_stress, C, state);
421 HMatricesType::ForceVectorType::Zero(GlobalDim);
423 HMatricesType::ForceVectorType::Zero(GlobalDim);
426 double ele_Fs = -std::numeric_limits<double>::max();
427 for (
auto const& ip : _ip_data)
429 ele_b += ip.aperture;
430 ele_k += ip.permeability;
432 ele_sigma_eff += ip.sigma_eff;
433 ele_velocity += ip.darcy_velocity;
435 ele_Fs, ip.material_state_variables->getShearYieldFunctionValue());
437 ele_b /=
static_cast<double>(n_integration_points);
438 ele_k /=
static_cast<double>(n_integration_points);
439 ele_w /=
static_cast<double>(n_integration_points);
440 ele_sigma_eff /=
static_cast<double>(n_integration_points);
441 ele_velocity /=
static_cast<double>(n_integration_points);
442 auto const element_id = _element.getID();
443 (*_process_data.mesh_prop_b)[element_id] = ele_b;
444 (*_process_data.mesh_prop_k_f)[element_id] = ele_k;
446 Eigen::Map<GlobalDimVectorType>(
447 &(*_process_data.element_fracture_stresses)[e_id * GlobalDim]) =
450 Eigen::Map<GlobalDimVectorType>(
451 &(*_process_data.element_fracture_velocities)[e_id * GlobalDim]) =
454 Eigen::Map<GlobalDimVectorType>(
455 &(*_process_data.element_local_jumps)[e_id * GlobalDim]) = ele_w;
457 (*_process_data.mesh_prop_fracture_shear_failure)[element_id] = ele_Fs;