OGS
heat_pipe_rough.prj
<
OpenGeoSysProject
>
<
meshes
>
<
mesh
axially_symmetric
="false">domain.vtu</mesh>
<
mesh
axially_symmetric
="false">boundary_left.vtu</mesh>
<
mesh
axially_symmetric
="false">boundary_right.vtu</mesh>
</meshes>
<
processes
>
<
process
>
<
name
>TH2M</name>
<
type
>
TH2M
</type>
<
integration_order
>3</integration_order>
<constitutive_relation>
<type>
LinearElasticIsotropic
</type>
<
youngs_modulus
>E</youngs_modulus>
<
poissons_ratio
>nu</poissons_ratio>
</constitutive_relation>
<
jacobian_assembler
>
<
type
>
CentralDifferences
</type>
<
component_magnitudes
>1e6 1e6 1e6 1e6
1e6 1e6 1e6 1e6
300 300 300 300
0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01</component_magnitudes>
<
relative_epsilons
>1e-8 1e-8 1e-8 1e-8
1e-8 1e-8 1e-8 1e-8
1e-8 1e-8 1e-8 1e-8
1e-5 1e-5 1e-5 1e-5
1e-5 1e-5 1e-5 1e-5</relative_epsilons>
</jacobian_assembler>
<
reference_temperature
>T0</reference_temperature>
<
process_variables
>
<
gas_pressure
>gas_pressure</gas_pressure>
<
capillary_pressure
>capillary_pressure</capillary_pressure>
<
temperature
>temperature</temperature>
<
displacement
>displacement</displacement>
</process_variables>
<
secondary_variables
>
<
secondary_variable
internal_name
="velocity_gas"
output_name
="velocity_gas" />
<
secondary_variable
internal_name
="velocity_liquid"
output_name
="velocity_liquid" />
<
secondary_variable
internal_name
="sigma"
output_name
="sigma" />
<
secondary_variable
internal_name
="epsilon"
output_name
="epsilon" />
<
secondary_variable
internal_name
="liquid_density"
output_name
="liquid_density" />
<
secondary_variable
internal_name
="gas_density"
output_name
="gas_density" />
<
secondary_variable
internal_name
="solid_density"
output_name
="solid_density" />
<
secondary_variable
internal_name
="vapour_pressure"
output_name
="vapour_pressure" />
<
secondary_variable
internal_name
="porosity"
output_name
="porosity" />
<
secondary_variable
internal_name
="saturation"
output_name
="saturation" />
<
secondary_variable
internal_name
="mole_fraction_gas"
output_name
="xnCG" />
<
secondary_variable
internal_name
="mass_fraction_gas"
output_name
="xmCG" />
<
secondary_variable
internal_name
="mass_fraction_liquid"
output_name
="xmWL" />
<
secondary_variable
internal_name
="relative_permeability_gas"
output_name
="k_rel_G" />
<
secondary_variable
internal_name
="relative_permeability_liquid"
output_name
="k_rel_L" />
</secondary_variables>
<
specific_body_force
>0 0</specific_body_force>
<
initial_stress
>initial_stress</initial_stress>
</process>
</processes>
<
media
>
<
medium
id
="0">
<
phases
>
<
phase
>
<
type
>
Gas
</type>
<
components
>
<
component
>
<
name
>A</name>
<
properties
>
<property>
<name>molar_mass</name>
<type>
Constant
</type>
<value>0.028949</value>
</property>
<property>
<name>specific_heat_capacity</name>
<type>
Constant
</type>
<value>733</value>
</property>
</properties>
</component>
<
component
>
<
name
>W</name>
<
properties
>
<property>
<name>molar_mass</name>
<type>
Constant
</type>
<value>0.018016</value>
</property>
<property>
<name>vapour_pressure</name>
<type>
ClausiusClapeyron
</type>
<triple_temperature>273.16</triple_temperature>
<triple_pressure>611.66</triple_pressure>
<critical_temperature>647.096</critical_temperature>
<critical_pressure>22.064e6</critical_pressure>
<reference_temperature>373.15</reference_temperature>
<reference_pressure>101325</reference_pressure>
</property>
<property>
<name>diffusion</name>
<type>
Constant
</type>
<value>2.6e-6</value>
</property>
<property>
<name>specific_heat_capacity</name>
<type>
Constant
</type>
<value>4187</value>
</property>
<property>
<name>specific_latent_heat</name>
<type>
Constant
</type>
<value>2258000</value>
</property>
</properties>
</component>
</components>
<
properties
>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>0.2</value>
</property>
<
property
>
<
name
>density</name>
<
type
>
IdealGasLawBinaryMixture
</type>
</property>
<
property
>
<
name
>viscosity</name>
<
type
>
Function
</type>
<
value
>
<
expression
>21.94e-6 * molar_fraction + (1.-molar_fraction)*12.27e-6</expression>
</value>
</property>
</properties>
</phase>
<
phase
>
<
type
>
AqueousLiquid
</type>
<
components
>
<
component
>
<
name
>A</name>
<
properties
>
<property>
<name>specific_heat_capacity</name>
<type>
Constant
</type>
<value>0</value>
</property>
<property>
<name>henry_coefficient</name>
<type>
Constant
</type>
<value>0</value>
</property>
<property>
<name>diffusion</name>
<type>
Constant
</type>
<value>0</value>
</property>
<property>
<name>specific_latent_heat</name>
<type>
Constant
</type>
<value>0</value>
</property>
</properties>
</component>
<
component
>
<
name
>W</name>
<
properties
>
<property>
<name>specific_heat_capacity</name>
<type>
Constant
</type>
<value>4187</value>
</property>
</properties>
</component>
</components>
<
properties
>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>.5</value>
</property>
<
property
>
<
name
>density</name>
<
type
>
Constant
</type>
<
value
>1000</value>
</property>
<
property
>
<
name
>viscosity</name>
<
type
>
Constant
</type>
<
value
>2.938e-4</value>
</property>
</properties>
</phase>
<
phase
>
<
type
>
Solid
</type>
<
properties
>
<
property
>
<
name
>density</name>
<
type
>
Constant
</type>
<
value
>2650.0</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>1</value>
</property>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>700</value>
</property>
<
property
>
<
name
>thermal_expansivity</name>
<
type
>
Constant
</type>
<
value
>0.0e-6</value>
</property>
</properties>
</phase>
</phases>
<
properties
>
<
property
>
<
name
>tortuosity</name>
<
type
>
Constant
</type>
<
value
>1</value>
</property>
<
property
>
<
name
>permeability</name>
<
type
>
Constant
</type>
<
value
>1.e-12</value>
</property>
<
property
>
<
name
>biot_coefficient</name>
<
type
>
Constant
</type>
<
value
>1.0</value>
</property>
<
property
>
<
name
>saturation</name>
<
type
>
SaturationBrooksCorey
</type>
<
residual_liquid_saturation
>0.0</residual_liquid_saturation>
<
residual_gas_saturation
>0.0</residual_gas_saturation>
<
lambda
>3</lambda>
<
entry_pressure
>5000.0</entry_pressure>
</property>
<
property
>
<
name
>relative_permeability_nonwetting_phase</name>
<
type
>
RelPermBrooksCoreyNonwettingPhase
</type>
<
residual_liquid_saturation
>0.0</residual_liquid_saturation>
<
residual_gas_saturation
>0.0</residual_gas_saturation>
<
min_relative_permeability
>1e-5</min_relative_permeability>
<
lambda
>3</lambda>
</property>
<
property
>
<
name
>relative_permeability</name>
<
type
>
RelPermBrooksCorey
</type>
<
residual_liquid_saturation
>0.0</residual_liquid_saturation>
<
residual_gas_saturation
>0.0</residual_gas_saturation>
<
min_relative_permeability
>1e-5</min_relative_permeability>
<
lambda
>3</lambda>
</property>
<
property
>
<
name
>porosity</name>
<
type
>
Constant
</type>
<
value
>0.4</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
EffectiveThermalConductivityPorosityMixing
</type>
</property>
<
property
>
<
name
>bishops_effective_stress</name>
<
type
>
BishopsPowerLaw
</type>
<
exponent
>1</exponent>
</property>
</properties>
</medium>
</media>
<
time_loop
>
<
processes
>
<
process
ref
="TH2M">
<
nonlinear_solver
>basic_newton</nonlinear_solver>
<
convergence_criterion
>
<
type
>
PerComponentDeltaX
</type>
<
norm_type
>NORM2</norm_type>
<
abstols
>1e-01 1e-01 1e-01 1e-6 1e-6</abstols>
</convergence_criterion>
<
time_discretization
>
<
type
>
BackwardEuler
</type>
</time_discretization>
<
time_stepping
>
<
type
>
FixedTimeStepping
</type>
<
t_initial
>0</t_initial>
<
t_end
>1.e7</t_end>
<
timesteps
>
<
pair
>
<
repeat
>10</repeat>
<
delta_t
>100</delta_t>
</pair>
<
pair
>
<
repeat
>10</repeat>
<
delta_t
>1000</delta_t>
</pair>
<
pair
>
<
repeat
>3</repeat>
<
delta_t
>10000</delta_t>
</pair>
<
pair
>
<
repeat
>1</repeat>
<
delta_t
>9000</delta_t>
</pair>
<
pair
>
<
repeat
>16</repeat>
<
delta_t
>10000</delta_t>
</pair>
<
pair
>
<
repeat
>14</repeat>
<
delta_t
>20000</delta_t>
</pair>
<
pair
>
<
repeat
>1</repeat>
<
delta_t
>10000</delta_t>
</pair>
<
pair
>
<
repeat
>5</repeat>
<
delta_t
>20000</delta_t>
</pair>
<
pair
>
<
repeat
>20</repeat>
<
delta_t
>40000</delta_t>
</pair>
<
pair
>
<
repeat
>20</repeat>
<
delta_t
>100000</delta_t>
</pair>
</timesteps>
</time_stepping>
</process>
</processes>
<
output
>
<
type
>
VTK
</type>
<
prefix
>results_heatpipe_rough</prefix>
<
timesteps
>
<
pair
>
<
repeat
>10</repeat>
<
each_steps
>10000</each_steps>
</pair>
</timesteps>
<
fixed_output_times
>1000.0
5000.0
10000.0
50000.0
100000.0
500000.0
1000000.0
5000000.0
10000000.0</fixed_output_times>
<
output_iteration_results
>false</output_iteration_results>
<
variables
>
<
variable
>gas_pressure</variable>
<
variable
>gas_pressure_interpolated</variable>
<
variable
>capillary_pressure</variable>
<
variable
>capillary_pressure_interpolated</variable>
<
variable
>liquid_pressure_interpolated</variable>
<
variable
>temperature</variable>
<
variable
>temperature_interpolated</variable>
<
variable
>displacement</variable>
<
variable
>sigma</variable>
<
variable
>epsilon</variable>
<
variable
>velocity_gas</variable>
<
variable
>velocity_liquid</variable>
<
variable
>liquid_density</variable>
<
variable
>gas_density</variable>
<
variable
>solid_density</variable>
<
variable
>vapour_pressure</variable>
<
variable
>porosity</variable>
<
variable
>saturation</variable>
<
variable
>xnGC</variable>
<
variable
>xmGC</variable>
<
variable
>xmWL</variable>
<
variable
>rhoG_hG_dot</variable>
<
variable
>rhoL_hL_dot</variable>
<
variable
>k_rel_G</variable>
<
variable
>k_rel_L</variable>
<
variable
>xnCG</variable>
</variables>
</output>
</time_loop>
<
parameters
>
<
parameter
>
<
name
>E</name>
<
type
>
Constant
</type>
<
value
>1.3e6</value>
</parameter>
<
parameter
>
<
name
>initial_stress</name>
<
type
>
Function
</type>
<
expression
>0</expression>
<
expression
>-((1-0.2975)*2.e3+0.2975*1.e3)*9.806*(1.-y) + 101325</expression>
<
expression
>0</expression>
<
expression
>0</expression>
</parameter>
<
parameter
>
<
name
>nu</name>
<
type
>
Constant
</type>
<
value
>0.4</value>
</parameter>
<
parameter
>
<
name
>T0</name>
<
type
>
Constant
</type>
<
value
>293.15</value>
</parameter>
<
parameter
>
<
name
>displacement0</name>
<
type
>
Constant
</type>
<
values
>0 0</values>
</parameter>
<
parameter
>
<
name
>pGR_ic</name>
<
type
>
Constant
</type>
<
value
>101325</value>
</parameter>
<
parameter
>
<
name
>pCap_ic</name>
<
type
>
Constant
</type>
<
value
>5555</value>
</parameter>
<
parameter
>
<
name
>pCap_bc</name>
<
type
>
Constant
</type>
<
value
>5001</value>
</parameter>
<
parameter
>
<
name
>T_ic</name>
<
type
>
Constant
</type>
<
value
>365</value>
</parameter>
<
parameter
>
<
name
>T_bc</name>
<
type
>
CurveScaled
</type>
<
curve
>timeRamp_temperature</curve>
<
parameter
>T_ic</parameter>
</parameter>
<
parameter
>
<
name
>ux_bc_right</name>
<
type
>
Constant
</type>
<
value
>0.4</value>
</parameter>
<
parameter
>
<
name
>sigma_xx_right</name>
<
type
>
Constant
</type>
<
value
>100.0</value>
</parameter>
<
parameter
>
<
name
>dirichlet0</name>
<
type
>
Constant
</type>
<
value
>0</value>
</parameter>
<
parameter
>
<
name
>heat_source</name>
<
type
>
Constant
</type>
<
value
>100</value>
</parameter>
<
parameter
>
<
name
>heat_source_scaled</name>
<
type
>
CurveScaled
</type>
<
curve
>timeRamp_temperature</curve>
<
parameter
>heat_source</parameter>
</parameter>
<
parameter
>
<
name
>displacementRight</name>
<
type
>
Constant
</type>
<
value
>-0.05</value>
</parameter>
<
parameter
>
<
name
>displacementRamp</name>
<
type
>
CurveScaled
</type>
<
curve
>timeRamp</curve>
<
parameter
>displacementRight</parameter>
</parameter>
</parameters>
<
curves
>
<
curve
>
<
name
>timeRamp_temperature</name>
<coords>0 100000 1.0e99</coords>
<values>1. 1. 1.</values>
</curve>
<
curve
>
<
name
>timeRamp_pressure</name>
<coords>0 1 3 5</coords>
<values>1. 1. 1.05 1.</values>
</curve>
<
curve
>
<
name
>timeRamp</name>
<coords>0 1000 10000</coords>
<values>0 1 1</values>
</curve>
</curves>
<
process_variables
>
<
process_variable
>
<
name
>displacement</name>
<
components
>2</components>
<
order
>1</order>
<
initial_condition
>displacement0</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>domain</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>dirichlet0</parameter>
</boundary_condition>
<
boundary_condition
>
<
mesh
>domain</mesh>
<
type
>
Dirichlet
</type>
<
component
>1</component>
<
parameter
>dirichlet0</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<
process_variable
>
<
name
>gas_pressure</name>
<
components
>1</components>
<
order
>1</order>
<
initial_condition
>pGR_ic</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>boundary_left</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>pGR_ic</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<
process_variable
>
<
name
>capillary_pressure</name>
<
components
>1</components>
<
order
>1</order>
<
initial_condition
>pCap_ic</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>boundary_left</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>pCap_bc</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<
process_variable
>
<
name
>temperature</name>
<
components
>1</components>
<
order
>1</order>
<
initial_condition
>T_ic</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>boundary_left</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>T_ic</parameter>
</boundary_condition>
<
boundary_condition
>
<
mesh
>boundary_right</mesh>
<
type
>
Neumann
</type>
<
component
>0</component>
<
parameter
>heat_source_scaled</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
</process_variables>
<
nonlinear_solvers
>
<
nonlinear_solver
>
<
name
>basic_newton</name>
<
type
>
Newton
</type>
<
max_iter
>100</max_iter>
<
linear_solver
>general_linear_solver</linear_solver>
</nonlinear_solver>
</nonlinear_solvers>
<
linear_solvers
>
<
linear_solver
>
<
name
>general_linear_solver</name>
<
lis
>-i bicgstab -p ilu -tol 1e-16 -maxiter 10000</lis>
<
eigen
>
<
solver_type
>SparseLU</solver_type>
<
scaling
>true</scaling>
</eigen>
<
petsc
>
<
prefix
>sd</prefix>
<
parameters
>-sd_ksp_type bcgs -sd_pc_type lu -sd_ksp_rtol 1e-16 -sd_ksp_max_it 10000</parameters>
</petsc>
</linear_solver>
</linear_solvers>
<
test_definition
>
<
vtkdiff
>
<
regex
>results_heatpipe_rough_ts_.*.vtu</regex>
<
field
>gas_pressure</field>
<
absolute_tolerance
>1e-6</absolute_tolerance>
<
relative_tolerance
>1.e-6</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>results_heatpipe_rough_ts_.*.vtu</regex>
<
field
>capillary_pressure</field>
<
absolute_tolerance
>1e-6</absolute_tolerance>
<
relative_tolerance
>1.e-6</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>results_heatpipe_rough_ts_.*.vtu</regex>
<
field
>temperature</field>
<
absolute_tolerance
>1e-6</absolute_tolerance>
<
relative_tolerance
>1.e-8</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>results_heatpipe_rough_ts_.*.vtu</regex>
<
field
>gas_density</field>
<
absolute_tolerance
>1e-6</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>results_heatpipe_rough_ts_.*.vtu</regex>
<
field
>saturation</field>
<
absolute_tolerance
>1e-6</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>results_heatpipe_rough_ts_.*.vtu</regex>
<
field
>xnCG</field>
<
absolute_tolerance
>1e-6</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
</test_definition>
</OpenGeoSysProject>
OGS CTests—Project Files
TH2M
TH2
heatpipe
Generated by
1.14.0