OGS
liakopoulos_TH2M.prj
<
OpenGeoSysProject
>
<
meshes
>
<
mesh
axially_symmetric
="true">domain.vtu</mesh>
<
mesh
axially_symmetric
="true">boundary_left.vtu</mesh>
<
mesh
axially_symmetric
="true">boundary_right.vtu</mesh>
<
mesh
axially_symmetric
="true">boundary_top.vtu</mesh>
<
mesh
axially_symmetric
="true">boundary_bottom.vtu</mesh>
</meshes>
<
processes
>
<
process
>
<
name
>TH2M</name>
<
type
>
TH2M
</type>
<
integration_order
>2</integration_order>
<constitutive_relation>
<type>
LinearElasticIsotropic
</type>
<
youngs_modulus
>E</youngs_modulus>
<
poissons_ratio
>nu</poissons_ratio>
</constitutive_relation>
<
jacobian_assembler
>
<
type
>
CentralDifferences
</type>
<
component_magnitudes
>1.0 1.0 1.0 1.0</component_magnitudes>
<
relative_epsilons
>1e-06 1e-06 1e-08 1e-08</relative_epsilons>
</jacobian_assembler>
<
reference_temperature
>T_0</reference_temperature>
<
process_variables
>
<
gas_pressure
>gas_pressure</gas_pressure>
<
capillary_pressure
>capillary_pressure</capillary_pressure>
<
temperature
>temperature</temperature>
<
displacement
>displacement</displacement>
</process_variables>
<
secondary_variables
>
<
secondary_variable
internal_name
="vapour_pressure"
output_name
="vapour_pressure" />
<
secondary_variable
internal_name
="velocity_gas"
output_name
="velocity_gas" />
<
secondary_variable
internal_name
="velocity_liquid"
output_name
="velocity_liquid" />
<
secondary_variable
internal_name
="sigma"
output_name
="sigma" />
<
secondary_variable
internal_name
="epsilon"
output_name
="epsilon" />
<
secondary_variable
internal_name
="liquid_density"
output_name
="liquid_density" />
<
secondary_variable
internal_name
="gas_density"
output_name
="gas_density" />
<
secondary_variable
internal_name
="porosity"
output_name
="porosity" />
<
secondary_variable
internal_name
="saturation"
output_name
="saturation" />
<
secondary_variable
internal_name
="mole_fraction_gas"
output_name
="xnCG" />
<
secondary_variable
internal_name
="mass_fraction_gas"
output_name
="xmCG" />
<
secondary_variable
internal_name
="mass_fraction_liquid"
output_name
="xmWL" />
</secondary_variables>
<
initial_stress
>sigma0</initial_stress>
<
specific_body_force
>0 -9.81</specific_body_force>
<
mass_lumping
>false</mass_lumping>
</process>
</processes>
<
media
>
<
medium
>
<
phases
>
<
phase
>
<
type
>
AqueousLiquid
</type>
<
properties
>
<
property
>
<
name
>viscosity</name>
<
type
>
Constant
</type>
<
value
>1e-3</value>
</property>
<
property
>
<
name
>density</name>
<
type
>
Constant
</type>
<
value
>1e3</value>
</property>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>4280.0</value>
</property>
<
property
>
<
name
>molar_mass</name>
<
type
>
Constant
</type>
<
value
>.018</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>0.6</value>
</property>
</properties>
</phase>
<
phase
>
<
type
>
Gas
</type>
<
properties
>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>800.0</value>
</property>
<
property
>
<
name
>molar_mass</name>
<
type
>
Constant
</type>
<
value
>.028949</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>0.6</value>
</property>
<
property
>
<
name
>density</name>
<
type
>
IdealGasLaw
</type>
</property>
<
property
>
<
name
>viscosity</name>
<
type
>
Constant
</type>
<
value
>1.8e-5</value>
</property>
</properties>
</phase>
<
phase
>
<
type
>
Solid
</type>
<
properties
>
<
property
>
<
name
>density</name>
<
type
>
Constant
</type>
<
value
>2e3</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
Constant
</type>
<
value
>1.838</value>
</property>
<
property
>
<
name
>specific_heat_capacity</name>
<
type
>
Constant
</type>
<
value
>917.654</value>
</property>
<
property
>
<
name
>thermal_expansivity</name>
<
type
>
Constant
</type>
<
value
>0</value>
</property>
</properties>
</phase>
</phases>
<
properties
>
<
property
>
<
name
>permeability</name>
<
type
>
Constant
</type>
<
value
>4.5e-13</value>
</property>
<
property
>
<
name
>biot_coefficient</name>
<
type
>
Constant
</type>
<
value
>1.0</value>
</property>
<
property
>
<
name
>saturation</name>
<
type
>
SaturationLiakopoulos
</type>
</property>
<
property
>
<
name
>relative_permeability</name>
<
type
>
RelPermLiakopoulos
</type>
</property>
<
property
>
<
name
>relative_permeability_nonwetting_phase</name>
<
type
>
RelPermBrooksCoreyNonwettingPhase
</type>
<
residual_liquid_saturation
>0.2</residual_liquid_saturation>
<
residual_gas_saturation
>0.0</residual_gas_saturation>
<
min_relative_permeability
>1.0e-4</min_relative_permeability>
<
lambda
>3.0</lambda>
</property>
<
property
>
<
name
>porosity</name>
<
type
>
Constant
</type>
<
value
>0.2975</value>
</property>
<
property
>
<
name
>thermal_conductivity</name>
<
type
>
EffectiveThermalConductivityPorosityMixing
</type>
</property>
<
property
>
<
name
>bishops_effective_stress</name>
<
type
>
BishopsPowerLaw
</type>
<
exponent
>1</exponent>
</property>
</properties>
</medium>
</media>
<
time_loop
>
<
processes
>
<
process
ref
="TH2M">
<
nonlinear_solver
>basic_newton</nonlinear_solver>
<
convergence_criterion
>
<
type
>
PerComponentDeltaX
</type>
<
norm_type
>NORM2</norm_type>
<
abstols
>1e-15 1e-15 1e-05 1e-05 1.e-05</abstols>
<
reltols
>1e-12 1e-11 1e-15 1e-10 1.e-10</reltols>
</convergence_criterion>
<
time_discretization
>
<
type
>
BackwardEuler
</type>
</time_discretization>
<
time_stepping
>
<
type
>
FixedTimeStepping
</type>
<
t_initial
>0.0</t_initial>
<
t_end
>7200</t_end>
<
timesteps
>
<
pair
>
<
repeat
>5</repeat>
<
delta_t
>1</delta_t>
</pair>
<
pair
>
<
repeat
>5</repeat>
<
delta_t
>5</delta_t>
</pair>
<
pair
>
<
repeat
>5</repeat>
<
delta_t
>10</delta_t>
</pair>
<
pair
>
<
repeat
>1</repeat>
<
delta_t
>40</delta_t>
</pair>
<
pair
>
<
repeat
>3</repeat>
<
delta_t
>50</delta_t>
</pair>
<
pair
>
<
repeat
>1</repeat>
<
delta_t
>30</delta_t>
</pair>
<
pair
>
<
repeat
>5</repeat>
<
delta_t
>100</delta_t>
</pair>
<
pair
>
<
repeat
>13</repeat>
<
delta_t
>200</delta_t>
</pair>
</timesteps>
</time_stepping>
</process>
</processes>
<
output
>
<
type
>
VTK
</type>
<
prefix
>result_liakopoulos</prefix>
<
suffix
>
t
{:gtime}</suffix>
<
timesteps
>
<
pair
>
<
repeat
>1</repeat>
<
each_steps
>1000</each_steps>
</pair>
</timesteps>
<
variables
>
<
variable
>gas_pressure</variable>
<
variable
>gas_pressure_interpolated</variable>
<
variable
>capillary_pressure</variable>
<
variable
>capillary_pressure_interpolated</variable>
<
variable
>liquid_pressure_interpolated</variable>
<
variable
>temperature</variable>
<
variable
>temperature_interpolated</variable>
<
variable
>displacement</variable>
<
variable
>sigma</variable>
<
variable
>epsilon</variable>
<
variable
>vapour_pressure</variable>
<
variable
>velocity_gas</variable>
<
variable
>velocity_liquid</variable>
<
variable
>liquid_density</variable>
<
variable
>gas_density</variable>
<
variable
>porosity</variable>
<
variable
>saturation</variable>
<
variable
>xnCG</variable>
<
variable
>xmCG</variable>
<
variable
>xmWL</variable>
</variables>
<
fixed_output_times
>120.
300.0
4800.0
7200.0</fixed_output_times>
</output>
</time_loop>
<
parameters
>
<
parameter
>
<
name
>E</name>
<
type
>
Constant
</type>
<
value
>1.3e6</value>
</parameter>
<
parameter
>
<
name
>nu</name>
<
type
>
Constant
</type>
<
value
>.4</value>
</parameter>
<
parameter
>
<
name
>sigma0</name>
<
type
>
Function
</type>
<
expression
>101325</expression>
<
expression
>101325</expression>
<
expression
>0</expression>
<
expression
>0</expression>
</parameter>
<
parameter
>
<
name
>displacement0</name>
<
type
>
Constant
</type>
<
values
>0 0</values>
</parameter>
<
parameter
>
<
name
>zero</name>
<
type
>
Constant
</type>
<
value
>0</value>
</parameter>
<
parameter
>
<
name
>temperature_ic</name>
<
type
>
Constant
</type>
<
value
>300</value>
</parameter>
<
parameter
>
<
name
>T_0</name>
<
type
>
Constant
</type>
<
value
>300</value>
</parameter>
<
parameter
>
<
name
>gas_pressure_ic</name>
<
type
>
Constant
</type>
<
value
>101325</value>
</parameter>
<
parameter
>
<
name
>capillary_pressure_ic</name>
<
type
>
Constant
</type>
<
value
>100</value>
</parameter>
<
parameter
>
<
name
>capillary_pressure_bc</name>
<
type
>
Constant
</type>
<
value
>100</value>
</parameter>
</parameters>
<
process_variables
>
<
process_variable
>
<
name
>displacement</name>
<
components
>2</components>
<
order
>1</order>
<
initial_condition
>displacement0</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>boundary_left</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>zero</parameter>
</boundary_condition>
<
boundary_condition
>
<
mesh
>boundary_right</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>zero</parameter>
</boundary_condition>
<
boundary_condition
>
<
mesh
>boundary_bottom</mesh>
<
type
>
Dirichlet
</type>
<
component
>1</component>
<
parameter
>zero</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<
process_variable
>
<
name
>gas_pressure</name>
<
components
>1</components>
<
order
>1</order>
<
initial_condition
>gas_pressure_ic</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>boundary_top</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>gas_pressure_ic</parameter>
</boundary_condition>
<
boundary_condition
>
<
mesh
>boundary_bottom</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>gas_pressure_ic</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<
process_variable
>
<
name
>capillary_pressure</name>
<
components
>1</components>
<
order
>1</order>
<
initial_condition
>capillary_pressure_ic</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>boundary_bottom</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>capillary_pressure_bc</parameter>
</boundary_condition>
</boundary_conditions>
</process_variable>
<
process_variable
>
<
name
>temperature</name>
<
components
>1</components>
<
order
>1</order>
<
initial_condition
>temperature_ic</initial_condition>
<
boundary_conditions
>
<
boundary_condition
>
<
mesh
>domain</mesh>
<
type
>
Dirichlet
</type>
<
component
>0</component>
<
parameter
>temperature_ic</parameter>
</boundary_condition>
</boundary_conditions>
<
source_terms
/>
</process_variable>
</process_variables>
<
nonlinear_solvers
>
<
nonlinear_solver
>
<
name
>basic_newton</name>
<
type
>
Newton
</type>
<
max_iter
>50</max_iter>
<
linear_solver
>general_linear_solver</linear_solver>
</nonlinear_solver>
</nonlinear_solvers>
<
linear_solvers
>
<
linear_solver
>
<
name
>general_linear_solver</name>
<
lis
>-i bicgstab -p ilu -tol 1e-16 -maxiter 10000</lis>
<
eigen
>
<
solver_type
>SparseLU</solver_type>
<
scaling
>true</scaling>
</eigen>
<
petsc
>
<
prefix
>sd</prefix>
<
parameters
>-sd_ksp_type cg -sd_pc_type bjacobi -sd_ksp_rtol 1e-16 -sd_ksp_max_it 10000</parameters>
</petsc>
</linear_solver>
</linear_solvers>
<
test_definition
>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>gas_pressure_interpolated</field>
<
absolute_tolerance
>2.1e-08</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>capillary_pressure_interpolated</field>
<
absolute_tolerance
>2.3e-08</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>temperature_interpolated</field>
<
absolute_tolerance
>0</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>displacement</field>
<
absolute_tolerance
>1e-14</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>sigma</field>
<
absolute_tolerance
>1e-07</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>epsilon</field>
<
absolute_tolerance
>1e-14</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>velocity_gas</field>
<
absolute_tolerance
>5e-9</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>velocity_liquid</field>
<
absolute_tolerance
>1e-14</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>gas_density</field>
<
absolute_tolerance
>1e-12</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>liquid_density</field>
<
absolute_tolerance
>5e-12</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>porosity</field>
<
absolute_tolerance
>1e-14</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
<
vtkdiff
>
<
regex
>result_liakopoulos_t_.*.vtu</regex>
<
field
>saturation</field>
<
absolute_tolerance
>1e-12</absolute_tolerance>
<
relative_tolerance
>0</relative_tolerance>
</vtkdiff>
</test_definition>
</OpenGeoSysProject>
OGS CTests—Project Files
TH2M
H2M
Liakopoulos
Generated by
1.14.0