OGS
ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess Class Referencefinal

Detailed Description

Global assembler for the monolithic scheme of the non-isothermal Richards flow.

Governing equations without vapor diffusion

The energy balance equation is given by

\[ (\rho c_p)^{eff}\dot T - \nabla (\mathbf{k}_T^{eff} \nabla T)+\rho^l c_p^l \nabla T \cdot \mathbf{v}^l = Q_T \]

with \(T\) the temperature, \((\rho c_p)^{eff}\) the effective volumetric heat capacity, \(\mathbf{k}_T^{eff} \) the effective thermal conductivity, \(\rho^l\) the density of liquid, \(c_p^l\) the specific heat capacity of liquid, \(\mathbf{v}^l\) the liquid velocity, and \(Q_T\) the point heat source. The effective volumetric heat can be considered as a composite of the contributions of solid phase and the liquid phase as

\[ (\rho c_p)^{eff} = (1-\phi) \rho^s c_p^s + S^l \phi \rho^l c_p^l \]

with \(\phi\) the porosity, \(S^l\) the liquid saturation, \(\rho^s \) the solid density, and \(c_p^s\) the specific heat capacity of solid. Similarly, the effective thermal conductivity is given by

\[ \mathbf{k}_T^{eff} = (1-\phi) \mathbf{k}_T^s + S^l \phi k_T^l \mathbf I \]

where \(\mathbf{k}_T^s\) is the thermal conductivity tensor of solid, \( k_T^l\) is the thermal conductivity of liquid, and \(\mathbf I\) is the identity tensor.

The mass balance equation is given by

\begin{eqnarray*} \left(S^l\beta - \phi\frac{\partial S}{\partial p_c}\right) \rho^l\dot p - S \left( \frac{\partial \rho^l}{\partial T} +\rho^l(\alpha_B -S) \alpha_T^s \right)\dot T\\ +\nabla (\rho^l \mathbf{v}^l) + S \alpha_B \rho^l \nabla \cdot \dot {\mathbf u}= Q_H \end{eqnarray*}

where \(p\) is the pore pressure, \(p_c\) is the capillary pressure, which is \(-p\) under the single phase assumption, \(\beta\) is a composite coefficient by the liquid compressibility and solid compressibility, \(\alpha_B\) is the Biot's constant, \(\alpha_T^s\) is the linear thermal expansivity of solid, \(Q_H\) is the point source or sink term, \(H(S-1)\) is the Heaviside function, and \( \mathbf u\) is the displacement. While this process does not contain a fully mechanical coupling, simplfied expressions can be given to approximate the latter term under certain stress conditions. The liquid velocity \(\mathbf{v}^l\) is described by the Darcy's law as

\[ \mathbf{v}^l=-\frac{{\mathbf k} k_{ref}}{\mu} (\nabla p - \rho^l \mathbf g) \]

with \({\mathbf k}\) the intrinsic permeability, \(k_{ref}\) the relative permeability, \(\mathbf g\) the gravitational force.

Definition at line 82 of file ThermoRichardsFlowProcess.h.

#include <ThermoRichardsFlowProcess.h>

Inheritance diagram for ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess:
[legend]
Collaboration diagram for ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess:
[legend]

Public Member Functions

 ThermoRichardsFlowProcess (std::string name, MeshLib::Mesh &mesh, std::unique_ptr< ProcessLib::AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase >> const &parameters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable >>> &&process_variables, ThermoRichardsFlowProcessData &&process_data, SecondaryVariableCollection &&secondary_variables, bool const use_monolithic_scheme)
 
ODESystem interface
bool isLinear () const override
 
- Public Member Functions inherited from ProcessLib::Process
 Process (std::string name_, MeshLib::Mesh &mesh, std::unique_ptr< AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase >> const &parameters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable >>> &&process_variables, SecondaryVariableCollection &&secondary_variables, const bool use_monolithic_scheme=true)
 
void preTimestep (std::vector< GlobalVector * > const &x, const double t, const double delta_t, const int process_id)
 Preprocessing before starting assembly for new timestep. More...
 
void postTimestep (std::vector< GlobalVector * > const &x, const double t, const double delta_t, int const process_id)
 Postprocessing after a complete timestep. More...
 
void postNonLinearSolver (GlobalVector const &x, GlobalVector const &xdot, const double t, double const dt, int const process_id)
 
void preIteration (const unsigned iter, GlobalVector const &x) final
 
void computeSecondaryVariable (double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_dot, int const process_id)
 compute secondary variables for the coupled equations or for output. More...
 
NumLib::IterationResult postIteration (GlobalVector const &x) final
 
void initialize ()
 
void setInitialConditions (std::vector< GlobalVector * > &process_solutions, std::vector< GlobalVector * > const &process_solutions_prev, double const t, int const process_id)
 
MathLib::MatrixSpecifications getMatrixSpecifications (const int process_id) const override
 
void setCoupledSolutionsForStaggeredScheme (CoupledSolutionsForStaggeredScheme *const coupled_solutions)
 
void updateDeactivatedSubdomains (double const time, const int process_id)
 
bool isMonolithicSchemeUsed () const
 
virtual void setCoupledTermForTheStaggeredSchemeToLocalAssemblers (int const)
 
virtual void extrapolateIntegrationPointValuesToNodes (const double, std::vector< GlobalVector * > const &, std::vector< GlobalVector * > &)
 
void preAssemble (const double t, double const dt, GlobalVector const &x) final
 
void assemble (const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b) final
 
void assembleWithJacobian (const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, const double dxdot_dx, const double dx_dx, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, GlobalMatrix &Jac) final
 
std::vector< NumLib::IndexValueVector< GlobalIndexType > > const * getKnownSolutions (double const t, GlobalVector const &x, int const process_id) const final
 
virtual NumLib::LocalToGlobalIndexMap const & getDOFTable (const int) const
 
MeshLib::MeshgetMesh () const
 
std::vector< std::reference_wrapper< ProcessVariable > > const & getProcessVariables (const int process_id) const
 
SecondaryVariableCollection const & getSecondaryVariables () const
 
std::vector< std::unique_ptr< IntegrationPointWriter > > const * getIntegrationPointWriter (MeshLib::Mesh const &mesh) const
 
virtual Eigen::Vector3d getFlux (std::size_t, MathLib::Point3d const &, double const, std::vector< GlobalVector * > const &) const
 
virtual void solveReactionEquation (std::vector< GlobalVector * > &, std::vector< GlobalVector * > const &, double const, double const, NumLib::EquationSystem &, int const)
 

Private Types

using LocalAssemblerIF = LocalAssemblerInterface
 

Private Member Functions

void initializeConcreteProcess (NumLib::LocalToGlobalIndexMap const &dof_table, MeshLib::Mesh const &mesh, unsigned const integration_order) override
 Process specific initialization called by initialize(). More...
 
void setInitialConditionsConcreteProcess (std::vector< GlobalVector * > &x, double const t, int const) override
 
void assembleConcreteProcess (const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b) override
 
void assembleWithJacobianConcreteProcess (const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, const double dxdot_dx, const double dx_dx, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, GlobalMatrix &Jac) override
 
void postTimestepConcreteProcess (std::vector< GlobalVector * > const &x, double const t, double const dt, const int process_id) override
 
void computeSecondaryVariableConcrete (double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_dot, int const process_id) override
 
std::vector< NumLib::LocalToGlobalIndexMap const * > getDOFTables (const int number_of_processes) const
 

Private Attributes

std::vector< MeshLib::Node * > _base_nodes
 
std::unique_ptr< MeshLib::MeshSubset const > _mesh_subset_base_nodes
 
ThermoRichardsFlowProcessData _process_data
 
std::vector< std::unique_ptr< LocalAssemblerIF > > _local_assemblers
 
GlobalSparsityPattern _sparsity_pattern_with_linear_element
 
MeshLib::PropertyVector< double > * _heat_flux = nullptr
 
MeshLib::PropertyVector< double > * _hydraulic_flow = nullptr
 

Additional Inherited Members

- Public Types inherited from ProcessLib::Process
using NonlinearSolver = NumLib::NonlinearSolverBase
 
using TimeDiscretization = NumLib::TimeDiscretization
 
- Public Attributes inherited from ProcessLib::Process
std::string const name
 
- Protected Member Functions inherited from ProcessLib::Process
NumLib::ExtrapolatorgetExtrapolator () const
 
NumLib::LocalToGlobalIndexMap const & getSingleComponentDOFTable () const
 
void initializeProcessBoundaryConditionsAndSourceTerms (const NumLib::LocalToGlobalIndexMap &dof_table, const int process_id)
 
virtual void constructDofTable ()
 
void constructMonolithicProcessDofTable ()
 
void constructDofTableOfSpecifiedProcessStaggeredScheme (const int specified_prosess_id)
 
virtual std::tuple< NumLib::LocalToGlobalIndexMap *, bool > getDOFTableForExtrapolatorData () const
 
- Protected Attributes inherited from ProcessLib::Process
MeshLib::Mesh_mesh
 
std::unique_ptr< MeshLib::MeshSubset const > _mesh_subset_all_nodes
 
std::unique_ptr< NumLib::LocalToGlobalIndexMap_local_to_global_index_map
 
SecondaryVariableCollection _secondary_variables
 
VectorMatrixAssembler _global_assembler
 
const bool _use_monolithic_scheme
 
CoupledSolutionsForStaggeredScheme_coupled_solutions
 
unsigned const _integration_order
 
std::vector< std::unique_ptr< IntegrationPointWriter > > _integration_point_writer
 
GlobalSparsityPattern _sparsity_pattern
 
std::vector< std::vector< std::reference_wrapper< ProcessVariable > > > _process_variables
 
std::vector< BoundaryConditionCollection_boundary_conditions
 

Member Typedef Documentation

◆ LocalAssemblerIF

Constructor & Destructor Documentation

◆ ThermoRichardsFlowProcess()

ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::ThermoRichardsFlowProcess ( std::string  name,
MeshLib::Mesh mesh,
std::unique_ptr< ProcessLib::AbstractJacobianAssembler > &&  jacobian_assembler,
std::vector< std::unique_ptr< ParameterLib::ParameterBase >> const &  parameters,
unsigned const  integration_order,
std::vector< std::vector< std::reference_wrapper< ProcessVariable >>> &&  process_variables,
ThermoRichardsFlowProcessData &&  process_data,
SecondaryVariableCollection &&  secondary_variables,
bool const  use_monolithic_scheme 
)

Definition at line 26 of file ThermoRichardsFlowProcess.cpp.

37  : Process(std::move(name), mesh, std::move(jacobian_assembler), parameters,
38  integration_order, std::move(process_variables),
39  std::move(secondary_variables), use_monolithic_scheme),
40  _process_data(std::move(process_data))
41 {
42  _heat_flux = MeshLib::getOrCreateMeshProperty<double>(
43  mesh, "HeatFlux", MeshLib::MeshItemType::Node, 1);
44 
45  _hydraulic_flow = MeshLib::getOrCreateMeshProperty<double>(
46  mesh, "HydraulicFlow", MeshLib::MeshItemType::Node, 1);
47 
48  // TODO (naumov) remove ip suffix. Probably needs modification of the mesh
49  // properties, s.t. there is no "overlapping" with cell/point data.
50  // See getOrCreateMeshProperty.
51  _integration_point_writer.emplace_back(
52  std::make_unique<IntegrationPointWriter>(
53  "saturation_ip", 1 /*n components*/, integration_order,
55 
56  _integration_point_writer.emplace_back(
57  std::make_unique<IntegrationPointWriter>(
58  "porosity_ip", 1 /*n components*/, integration_order,
60 }
std::string const name
Definition: Process.h:323
std::vector< std::unique_ptr< IntegrationPointWriter > > _integration_point_writer
Definition: Process.h:350
Process(std::string name_, MeshLib::Mesh &mesh, std::unique_ptr< AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase >> const &parameters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable >>> &&process_variables, SecondaryVariableCollection &&secondary_variables, const bool use_monolithic_scheme=true)
Definition: Process.cpp:22
std::vector< std::unique_ptr< LocalAssemblerIF > > _local_assemblers
virtual std::vector< double > getSaturation() const =0
virtual std::vector< double > getPorosity() const =0

References _heat_flux, _hydraulic_flow, ProcessLib::Process::_integration_point_writer, _local_assemblers, ProcessLib::ThermoRichardsFlow::LocalAssemblerInterface::getPorosity(), ProcessLib::ThermoRichardsFlow::LocalAssemblerInterface::getSaturation(), and MeshLib::Node.

Member Function Documentation

◆ assembleConcreteProcess()

void ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::assembleConcreteProcess ( const double  t,
double const  dt,
std::vector< GlobalVector * > const &  x,
std::vector< GlobalVector * > const &  xdot,
int const  process_id,
GlobalMatrix M,
GlobalMatrix K,
GlobalVector b 
)
overrideprivatevirtual

Implements ProcessLib::Process.

Definition at line 181 of file ThermoRichardsFlowProcess.cpp.

185 {
186  DBUG("Assemble the equations for ThermoRichardsFlowProcess.");
187 
188  std::vector<std::reference_wrapper<NumLib::LocalToGlobalIndexMap>>
189  dof_table = {std::ref(*_local_to_global_index_map)};
190  ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
191 
192  // Call global assembler for each local assembly item.
195  pv.getActiveElementIDs(), dof_table, t, dt, x, xdot, process_id, M, K,
196  b);
197 }
void DBUG(char const *fmt, Args const &... args)
Definition: Logging.h:27
std::vector< std::size_t > const & getActiveElementIDs() const
std::vector< std::reference_wrapper< ProcessVariable > > const & getProcessVariables(const int process_id) const
Definition: Process.h:145
VectorMatrixAssembler _global_assembler
Definition: Process.h:333
std::unique_ptr< NumLib::LocalToGlobalIndexMap > _local_to_global_index_map
Definition: Process.h:329
void assemble(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< std::reference_wrapper< NumLib::LocalToGlobalIndexMap >> const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b)
static void executeSelectedMemberDereferenced(Object &object, Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)

References ProcessLib::Process::_global_assembler, _local_assemblers, ProcessLib::Process::_local_to_global_index_map, ProcessLib::VectorMatrixAssembler::assemble(), DBUG(), NumLib::SerialExecutor::executeSelectedMemberDereferenced(), ProcessLib::ProcessVariable::getActiveElementIDs(), and ProcessLib::Process::getProcessVariables().

◆ assembleWithJacobianConcreteProcess()

void ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::assembleWithJacobianConcreteProcess ( const double  t,
double const  dt,
std::vector< GlobalVector * > const &  x,
std::vector< GlobalVector * > const &  xdot,
const double  dxdot_dx,
const double  dx_dx,
int const  process_id,
GlobalMatrix M,
GlobalMatrix K,
GlobalVector b,
GlobalMatrix Jac 
)
overrideprivatevirtual

Implements ProcessLib::Process.

Definition at line 199 of file ThermoRichardsFlowProcess.cpp.

204 {
205  std::vector<std::reference_wrapper<NumLib::LocalToGlobalIndexMap>>
206  dof_tables;
207 
208  DBUG(
209  "Assemble the Jacobian of ThermoRichardsFlow for the monolithic "
210  "scheme.");
211  dof_tables.emplace_back(*_local_to_global_index_map);
212 
213  ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
214 
217  _local_assemblers, pv.getActiveElementIDs(), dof_tables, t, dt, x, xdot,
218  dxdot_dx, dx_dx, process_id, M, K, b, Jac);
219 
220  auto copyRhs = [&](int const variable_id, auto& output_vector)
221  {
222  transformVariableFromGlobalVector(b, variable_id, dof_tables[0],
223  output_vector, std::negate<double>());
224  };
225 
226  copyRhs(0, *_heat_flux);
227  copyRhs(1, *_hydraulic_flow);
228 }
void assembleWithJacobian(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< std::reference_wrapper< NumLib::LocalToGlobalIndexMap >> const &dof_tables, const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, const double dxdot_dx, const double dx_dx, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, GlobalMatrix &Jac)
void transformVariableFromGlobalVector(GlobalVector const &input_vector, int const variable_id, NumLib::LocalToGlobalIndexMap const &local_to_global_index_map, MeshLib::PropertyVector< double > &output_vector, Functor mapFunction)
Definition: DOFTableUtil.h:59

References ProcessLib::Process::_global_assembler, _heat_flux, _hydraulic_flow, _local_assemblers, ProcessLib::Process::_local_to_global_index_map, ProcessLib::VectorMatrixAssembler::assembleWithJacobian(), DBUG(), NumLib::SerialExecutor::executeSelectedMemberDereferenced(), ProcessLib::ProcessVariable::getActiveElementIDs(), ProcessLib::Process::getProcessVariables(), and NumLib::transformVariableFromGlobalVector().

◆ computeSecondaryVariableConcrete()

void ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::computeSecondaryVariableConcrete ( double const  t,
double const  dt,
std::vector< GlobalVector * > const &  x,
GlobalVector const &  x_dot,
int const  process_id 
)
overrideprivatevirtual

Reimplemented from ProcessLib::Process.

Definition at line 249 of file ThermoRichardsFlowProcess.cpp.

252 {
253  if (process_id != 0)
254  {
255  return;
256  }
257  DBUG(
258  "Compute the secondary variables for "
259  "ThermoRichardsFlowProcess.");
260  auto const dof_tables = getDOFTables(x.size());
261  ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
262 
265  pv.getActiveElementIDs(), dof_tables, t, dt, x, x_dot, process_id);
266 }
virtual void computeSecondaryVariable(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_dot, int const process_id)
std::vector< NumLib::LocalToGlobalIndexMap const * > getDOFTables(const int number_of_processes) const
static void executeSelectedMemberOnDereferenced(Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)

References _local_assemblers, ProcessLib::LocalAssemblerInterface::computeSecondaryVariable(), DBUG(), NumLib::SerialExecutor::executeSelectedMemberOnDereferenced(), ProcessLib::ProcessVariable::getActiveElementIDs(), getDOFTables(), and ProcessLib::Process::getProcessVariables().

◆ getDOFTables()

std::vector< NumLib::LocalToGlobalIndexMap const * > ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::getDOFTables ( const int  number_of_processes) const
private

Definition at line 269 of file ThermoRichardsFlowProcess.cpp.

270 {
271  std::vector<NumLib::LocalToGlobalIndexMap const*> dof_tables;
272  dof_tables.reserve(number_of_processes);
273  std::generate_n(std::back_inserter(dof_tables), number_of_processes,
274  [&]() { return _local_to_global_index_map.get(); });
275  return dof_tables;
276 }

References ProcessLib::Process::_local_to_global_index_map.

Referenced by computeSecondaryVariableConcrete(), and postTimestepConcreteProcess().

◆ initializeConcreteProcess()

void ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::initializeConcreteProcess ( NumLib::LocalToGlobalIndexMap const &  dof_table,
MeshLib::Mesh const &  mesh,
unsigned const  integration_order 
)
overrideprivatevirtual

Process specific initialization called by initialize().

Implements ProcessLib::Process.

Definition at line 62 of file ThermoRichardsFlowProcess.cpp.

66 {
67  using nlohmann::json;
68 
69  const int process_id = 0;
70  const int variable_id = 0;
71  ProcessLib::createLocalAssemblers<ThermoRichardsFlowLocalAssembler>(
72  mesh.getDimension(), mesh.getElements(), dof_table,
73  getProcessVariables(process_id)[variable_id]
74  .get()
75  .getShapeFunctionOrder(),
76  _local_assemblers, mesh.isAxiallySymmetric(), integration_order,
78 
79  auto add_secondary_variable = [&](std::string const& name,
80  int const num_components,
81  auto get_ip_values_function)
82  {
84  name,
85  makeExtrapolator(num_components, getExtrapolator(),
87  std::move(get_ip_values_function)));
88  };
89 
90  add_secondary_variable("velocity", mesh.getDimension(),
92 
93  add_secondary_variable("saturation", 1,
95 
96  add_secondary_variable("porosity", 1, &LocalAssemblerIF::getIntPtPorosity);
97 
98  add_secondary_variable("dry_density_solid", 1,
100 
101  _process_data.element_saturation = MeshLib::getOrCreateMeshProperty<double>(
102  const_cast<MeshLib::Mesh&>(mesh), "saturation_avg",
104 
105  _process_data.element_porosity = MeshLib::getOrCreateMeshProperty<double>(
106  const_cast<MeshLib::Mesh&>(mesh), "porosity_avg",
108 
109  // Set initial conditions for integration point data.
110  for (auto const& ip_writer : _integration_point_writer)
111  {
112  // Find the mesh property with integration point writer's name.
113  auto const& name = ip_writer->name();
114  if (!mesh.getProperties().existsPropertyVector<double>(name))
115  {
116  continue;
117  }
118  auto const& mesh_property =
119  *mesh.getProperties().template getPropertyVector<double>(name);
120 
121  // The mesh property must be defined on integration points.
122  if (mesh_property.getMeshItemType() !=
124  {
125  continue;
126  }
127 
128  auto const ip_meta_data = getIntegrationPointMetaData(mesh, name);
129 
130  // Check the number of components.
131  if (ip_meta_data.n_components !=
132  mesh_property.getNumberOfGlobalComponents())
133  {
134  OGS_FATAL(
135  "Different number of components in meta data ({:d}) than in "
136  "the integration point field data for '{:s}': {:d}.",
137  ip_meta_data.n_components, name,
138  mesh_property.getNumberOfGlobalComponents());
139  }
140 
141  // Now we have a properly named vtk's field data array and the
142  // corresponding meta data.
143  std::size_t position = 0;
144  for (auto& local_asm : _local_assemblers)
145  {
146  std::size_t const integration_points_read =
147  local_asm->setIPDataInitialConditions(
148  name, &mesh_property[position],
149  ip_meta_data.integration_order);
150  if (integration_points_read == 0)
151  {
152  OGS_FATAL(
153  "No integration points read in the integration point "
154  "initial conditions set function.");
155  }
156  position += integration_points_read * ip_meta_data.n_components;
157  }
158  }
159 
160  // Initialize local assemblers after all variables have been set.
164 }
#define OGS_FATAL(...)
Definition: Error.h:26
virtual void initialize(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
NumLib::Extrapolator & getExtrapolator() const
Definition: Process.h:185
SecondaryVariableCollection _secondary_variables
Definition: Process.h:331
void addSecondaryVariable(std::string const &internal_name, SecondaryVariableFunctions &&fcts)
IntegrationPointMetaData getIntegrationPointMetaData(MeshLib::Mesh const &mesh, std::string const &name)
SecondaryVariableFunctions makeExtrapolator(const unsigned num_components, NumLib::Extrapolator &extrapolator, LocalAssemblerCollection const &local_assemblers, typename NumLib::ExtrapolatableLocalAssemblerCollection< LocalAssemblerCollection >::IntegrationPointValuesMethod integration_point_values_method)
static void executeMemberOnDereferenced(Method method, Container const &container, Args &&... args)
virtual std::vector< double > const & getIntPtDarcyVelocity(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0
virtual std::vector< double > const & getIntPtDryDensitySolid(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0
virtual std::vector< double > const & getIntPtSaturation(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0
virtual std::vector< double > const & getIntPtPorosity(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0

References ProcessLib::Process::_integration_point_writer, _local_assemblers, ProcessLib::Process::_local_to_global_index_map, _process_data, ProcessLib::Process::_secondary_variables, ProcessLib::SecondaryVariableCollection::addSecondaryVariable(), MeshLib::Cell, ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcessData::element_porosity, ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcessData::element_saturation, NumLib::SerialExecutor::executeMemberOnDereferenced(), MeshLib::Properties::existsPropertyVector(), MeshLib::Mesh::getDimension(), MeshLib::Mesh::getElements(), ProcessLib::Process::getExtrapolator(), ProcessLib::getIntegrationPointMetaData(), ProcessLib::ThermoRichardsFlow::LocalAssemblerInterface::getIntPtDarcyVelocity(), ProcessLib::ThermoRichardsFlow::LocalAssemblerInterface::getIntPtDryDensitySolid(), ProcessLib::ThermoRichardsFlow::LocalAssemblerInterface::getIntPtPorosity(), ProcessLib::ThermoRichardsFlow::LocalAssemblerInterface::getIntPtSaturation(), ProcessLib::Process::getProcessVariables(), MeshLib::Mesh::getProperties(), ProcessLib::LocalAssemblerInterface::initialize(), MeshLib::IntegrationPoint, MeshLib::Mesh::isAxiallySymmetric(), ProcessLib::makeExtrapolator(), ProcessLib::Process::name, and OGS_FATAL.

◆ isLinear()

bool ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::isLinear ( ) const
inlineoverride

Definition at line 102 of file ThermoRichardsFlowProcess.h.

102 { return false; }

◆ postTimestepConcreteProcess()

void ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::postTimestepConcreteProcess ( std::vector< GlobalVector * > const &  x,
double const  t,
double const  dt,
const int  process_id 
)
overrideprivatevirtual

Reimplemented from ProcessLib::Process.

Definition at line 230 of file ThermoRichardsFlowProcess.cpp.

233 {
234  if (process_id != 0)
235  {
236  return;
237  }
238 
239  DBUG("PostTimestep ThermoRichardsFlowProcess.");
240 
241  auto const dof_tables = getDOFTables(x.size());
242 
243  ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
246  pv.getActiveElementIDs(), dof_tables, x, t, dt);
247 }
virtual void postTimestep(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, double const dt)

References _local_assemblers, DBUG(), NumLib::SerialExecutor::executeSelectedMemberOnDereferenced(), ProcessLib::ProcessVariable::getActiveElementIDs(), getDOFTables(), ProcessLib::Process::getProcessVariables(), and ProcessLib::LocalAssemblerInterface::postTimestep().

◆ setInitialConditionsConcreteProcess()

void ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::setInitialConditionsConcreteProcess ( std::vector< GlobalVector * > &  x,
double const  t,
int const  process_id 
)
overrideprivatevirtual

Reimplemented from ProcessLib::Process.

Definition at line 166 of file ThermoRichardsFlowProcess.cpp.

168 {
169  if (process_id != 0)
170  {
171  return;
172  }
173  DBUG("SetInitialConditions ThermoRichardsFlowProcess.");
174 
178  process_id);
179 }
void setInitialConditions(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table, GlobalVector const &x, double const t, bool const use_monolithic_scheme, int const process_id)
const bool _use_monolithic_scheme
Definition: Process.h:335

References _local_assemblers, ProcessLib::Process::_local_to_global_index_map, ProcessLib::Process::_use_monolithic_scheme, DBUG(), NumLib::SerialExecutor::executeMemberOnDereferenced(), and ProcessLib::LocalAssemblerInterface::setInitialConditions().

Member Data Documentation

◆ _base_nodes

std::vector<MeshLib::Node*> ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::_base_nodes
private

Definition at line 134 of file ThermoRichardsFlowProcess.h.

◆ _heat_flux

MeshLib::PropertyVector<double>* ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::_heat_flux = nullptr
private

◆ _hydraulic_flow

MeshLib::PropertyVector<double>* ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::_hydraulic_flow = nullptr
private

◆ _local_assemblers

std::vector<std::unique_ptr<LocalAssemblerIF> > ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::_local_assemblers
private

◆ _mesh_subset_base_nodes

std::unique_ptr<MeshLib::MeshSubset const> ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::_mesh_subset_base_nodes
private

Definition at line 135 of file ThermoRichardsFlowProcess.h.

◆ _process_data

ThermoRichardsFlowProcessData ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::_process_data
private

Definition at line 136 of file ThermoRichardsFlowProcess.h.

Referenced by initializeConcreteProcess().

◆ _sparsity_pattern_with_linear_element

GlobalSparsityPattern ProcessLib::ThermoRichardsFlow::ThermoRichardsFlowProcess::_sparsity_pattern_with_linear_element
private

Sparsity pattern for the flow equation, and it is initialized only if the staggered scheme is used.

Definition at line 142 of file ThermoRichardsFlowProcess.h.


The documentation for this class was generated from the following files: