Loading [MathJax]/extensions/tex2jax.js
OGS
ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim > Class Template Reference

Detailed Description

template<typename ShapeFunction, int GlobalDim>
class ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >

Definition at line 206 of file ComponentTransportFEM.h.

#include <ComponentTransportFEM.h>

Inheritance diagram for ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >:
[legend]
Collaboration diagram for ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >:
[legend]

Public Member Functions

 LocalAssemblerData (MeshLib::Element const &element, std::size_t const local_matrix_size, NumLib::GenericIntegrationMethod const &integration_method, bool is_axially_symmetric, ComponentTransportProcessData const &process_data, std::vector< std::reference_wrapper< ProcessVariable > > const &transport_process_variables)
 
void setChemicalSystemID (std::size_t const) override
 
void initializeChemicalSystemConcrete (Eigen::VectorXd const &local_x, double const t) override
 
void setChemicalSystemConcrete (Eigen::VectorXd const &local_x, double const t, double dt) override
 
void postSpeciationCalculation (std::size_t const ele_id, double const t, double const dt) override
 
void assemble (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
 
void assembleBlockMatrices (GlobalDimVectorType const &b, int const component_id, double const t, double const dt, Eigen::Ref< const NodalVectorType > const &C_nodal_values, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< LocalBlockMatrixType > KCC, Eigen::Ref< LocalBlockMatrixType > MCC, Eigen::Ref< LocalBlockMatrixType > MCp, Eigen::Ref< LocalBlockMatrixType > MpC, Eigen::Ref< LocalBlockMatrixType > Kpp, Eigen::Ref< LocalBlockMatrixType > Mpp, Eigen::Ref< LocalSegmentVectorType > Bp)
 
void assembleKCmCn (int const component_id, double const t, double const dt, Eigen::Ref< LocalBlockMatrixType > KCmCn, double const stoichiometric_coefficient, double const kinetic_prefactor)
 
void assembleForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
 
void assembleHydraulicEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
 
void assembleHeatTransportEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &)
 
void assembleComponentTransportEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &, int const transport_process_id)
 
void assembleWithJacobianForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data) override
 
void assembleWithJacobianHydraulicEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
 
void assembleWithJacobianComponentTransportEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data, int const component_id)
 
void assembleReactionEquationConcrete (double const t, double const dt, Eigen::VectorXd const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data, int const transport_process_id) override
 
std::vector< double > const & getIntPtDarcyVelocity (const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const override
 
std::vector< double > const & calculateIntPtDarcyVelocity (const double t, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< const NodalVectorType > const &C_nodal_values, std::vector< double > &cache) const
 
Eigen::Map< const Eigen::RowVectorXd > getShapeMatrix (const unsigned integration_point) const override
 Provides the shape matrix at the given integration point.
 
Eigen::Vector3d getFlux (MathLib::Point3d const &pnt_local_coords, double const t, std::vector< double > const &local_x) const override
 
void computeSecondaryVariableConcrete (double const t, double const, Eigen::VectorXd const &local_x, Eigen::VectorXd const &) override
 
void computeReactionRelatedSecondaryVariable (std::size_t const ele_id) override
 
std::vector< double > const & getIntPtMolarFlux (const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< double > &cache, int const component_id) const override
 
void postTimestepConcrete (Eigen::VectorXd const &, Eigen::VectorXd const &, double const, double const, int const) override
 
- Public Member Functions inherited from ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface
 ComponentTransportLocalAssemblerInterface ()=default
 
void initializeChemicalSystem (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t)
 
void setChemicalSystem (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, double const dt)
 
void assembleReactionEquation (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, double const dt, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, int const process_id)
 
- Public Member Functions inherited from ProcessLib::LocalAssemblerInterface
virtual ~LocalAssemblerInterface ()=default
 
virtual void setInitialConditions (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, int const process_id)
 
virtual void initialize (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
 
virtual void preAssemble (double const, double const, std::vector< double > const &)
 
virtual void assembleWithJacobian (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
 
virtual void computeSecondaryVariable (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
 
virtual void preTimestep (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table, GlobalVector const &x, double const t, double const delta_t)
 
virtual void postTimestep (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
 
void postNonLinearSolver (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
 
virtual Eigen::Vector3d getFlux (MathLib::Point3d const &, double const, std::vector< std::vector< double > > const &) const
 Fits to staggered scheme.
 
virtual std::optional< VectorSegmentgetVectorDeformationSegment () const
 
- Public Member Functions inherited from NumLib::ExtrapolatableElement
virtual ~ExtrapolatableElement ()=default
 

Private Types

using ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
 
using ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
 
using LocalBlockMatrixType
 
using LocalSegmentVectorType
 
using LocalMatrixType
 
using LocalVectorType = Eigen::Matrix<double, Eigen::Dynamic, 1>
 
using NodalVectorType = typename ShapeMatricesType::NodalVectorType
 
using NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
 
using GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
 
using GlobalDimNodalMatrixType
 
using GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType
 

Private Member Functions

double getHeatEnergyCoefficient (MaterialPropertyLib::VariableArray const &vars, const double porosity, const double fluid_density, const double specific_heat_capacity_fluid, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
 
GlobalDimMatrixType getThermalConductivityDispersivity (MaterialPropertyLib::VariableArray const &vars, const double fluid_density, const double specific_heat_capacity_fluid, const GlobalDimVectorType &velocity, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
 
NodalVectorType getLocalTemperature (double const t, Eigen::VectorXd const &local_x)
 

Private Attributes

const int temperature_index = -1
 
const int first_concentration_index = -1
 
MeshLib::Element const & _element
 
ComponentTransportProcessData const & _process_data
 
NumLib::GenericIntegrationMethod const & _integration_method
 
std::vector< std::reference_wrapper< ProcessVariable > > const _transport_process_variables
 
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data
 

Static Private Attributes

static const int pressure_index = 0
 
static const int pressure_size = ShapeFunction::NPOINTS
 
static const int temperature_size = ShapeFunction::NPOINTS
 
static const int concentration_size
 

Member Typedef Documentation

◆ GlobalDimMatrixType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType
private

Definition at line 238 of file ComponentTransportFEM.h.

◆ GlobalDimNodalMatrixType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::GlobalDimNodalMatrixType
private
Initial value:
MatrixType< GlobalDim, ShapeFunction::NPOINTS > GlobalDimNodalMatrixType

Definition at line 236 of file ComponentTransportFEM.h.

◆ GlobalDimVectorType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
private

Definition at line 235 of file ComponentTransportFEM.h.

◆ LocalBlockMatrixType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalBlockMatrixType
private
Initial value:
typename ShapeMatricesType::template MatrixType<pressure_size,

Definition at line 222 of file ComponentTransportFEM.h.

◆ LocalMatrixType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalMatrixType
private
Initial value:
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>

Definition at line 228 of file ComponentTransportFEM.h.

◆ LocalSegmentVectorType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalSegmentVectorType
private
Initial value:
typename ShapeMatricesType::template VectorType<pressure_size>

Definition at line 225 of file ComponentTransportFEM.h.

◆ LocalVectorType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalVectorType = Eigen::Matrix<double, Eigen::Dynamic, 1>
private

Definition at line 230 of file ComponentTransportFEM.h.

◆ NodalRowVectorType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
private

Definition at line 233 of file ComponentTransportFEM.h.

◆ NodalVectorType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::NodalVectorType = typename ShapeMatricesType::NodalVectorType
private

Definition at line 232 of file ComponentTransportFEM.h.

◆ ShapeMatrices

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
private

Definition at line 220 of file ComponentTransportFEM.h.

◆ ShapeMatricesType

template<typename ShapeFunction , int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
private

Definition at line 219 of file ComponentTransportFEM.h.

Constructor & Destructor Documentation

◆ LocalAssemblerData()

template<typename ShapeFunction , int GlobalDim>
ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalAssemblerData ( MeshLib::Element const & element,
std::size_t const local_matrix_size,
NumLib::GenericIntegrationMethod const & integration_method,
bool is_axially_symmetric,
ComponentTransportProcessData const & process_data,
std::vector< std::reference_wrapper< ProcessVariable > > const & transport_process_variables )
inline

Definition at line 241 of file ComponentTransportFEM.h.

249 : temperature_index(process_data.isothermal ? -1
250 : ShapeFunction::NPOINTS),
251 first_concentration_index(process_data.isothermal
252 ? ShapeFunction::NPOINTS
253 : 2 * ShapeFunction::NPOINTS),
254 _element(element),
255 _process_data(process_data),
256 _integration_method(integration_method),
257 _transport_process_variables(transport_process_variables)
258 {
259 (void)local_matrix_size;
260
261 unsigned const n_integration_points =
263 _ip_data.reserve(n_integration_points);
264
267
268 double const aperture_size = _process_data.aperture_size(0.0, pos)[0];
269
270 auto const shape_matrices =
272 GlobalDim>(element, is_axially_symmetric,
274 auto const& medium =
276 for (unsigned ip = 0; ip < n_integration_points; ip++)
277 {
278 _ip_data.emplace_back(
279 shape_matrices[ip].dNdx,
281 shape_matrices[ip].integralMeasure *
282 shape_matrices[ip].detJ * aperture_size);
283
284 _ip_data[ip].porosity =
286 .template initialValue<double>(
287 pos, std::numeric_limits<double>::quiet_NaN() /*t*/);
288
289 _ip_data[ip].pushBackState();
290 }
291 }
constexpr double getWeight() const
std::size_t getID() const
Returns the ID of the element.
Definition Element.h:91
MathLib::WeightedPoint const & getWeightedPoint(unsigned const igp) const
void setElementID(std::size_t element_id)
NumLib::GenericIntegrationMethod const & _integration_method
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data
ComponentTransportProcessData const & _process_data
ShapeMatrixPolicyType< ShapeFunction, GlobalDim > ShapeMatricesType
std::vector< std::reference_wrapper< ProcessVariable > > const _transport_process_variables
std::vector< typename ShapeMatricesType::ShapeMatrices, Eigen::aligned_allocator< typename ShapeMatricesType::ShapeMatrices > > initShapeMatrices(MeshLib::Element const &e, bool const is_axially_symmetric, IntegrationMethod const &integration_method)
MaterialPropertyLib::MaterialSpatialDistributionMap media_map

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::ComponentTransportProcessData::aperture_size, MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), MathLib::WeightedPoint::getWeight(), NumLib::GenericIntegrationMethod::getWeightedPoint(), NumLib::initShapeMatrices(), ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, MaterialPropertyLib::porosity, and ParameterLib::SpatialPosition::setElementID().

Member Function Documentation

◆ assemble()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assemble ( double const t,
double const dt,
std::vector< double > const & local_x,
std::vector< double > const & ,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 458 of file ComponentTransportFEM.h.

464 {
465 auto const local_matrix_size = local_x.size();
466 // Nodal DOFs include pressure
467 int const num_nodal_dof = 1 + _transport_process_variables.size();
468 // This assertion is valid only if all nodal d.o.f. use the same shape
469 // matrices.
470 assert(local_matrix_size == ShapeFunction::NPOINTS * num_nodal_dof);
471
473 local_M_data, local_matrix_size, local_matrix_size);
475 local_K_data, local_matrix_size, local_matrix_size);
477 local_b_data, local_matrix_size);
478
479 // Get block matrices
480 auto Kpp = local_K.template block<pressure_size, pressure_size>(
482 auto Mpp = local_M.template block<pressure_size, pressure_size>(
484 auto Bp = local_b.template segment<pressure_size>(pressure_index);
485
486 auto local_p = Eigen::Map<const NodalVectorType>(
487 &local_x[pressure_index], pressure_size);
488
489 auto const& b =
492
493 auto const number_of_components = num_nodal_dof - 1;
494 for (int component_id = 0; component_id < number_of_components;
495 ++component_id)
496 {
497 /* Partitioned assembler matrix
498 * | pp | pc1 | pc2 | pc3 |
499 * |-----|-----|-----|-----|
500 * | c1p | c1c1| 0 | 0 |
501 * |-----|-----|-----|-----|
502 * | c2p | 0 | c2c2| 0 |
503 * |-----|-----|-----|-----|
504 * | c3p | 0 | 0 | c3c3|
505 */
506 auto concentration_index =
507 pressure_size + component_id * concentration_size;
508
509 auto KCC =
510 local_K.template block<concentration_size, concentration_size>(
511 concentration_index, concentration_index);
512 auto MCC =
513 local_M.template block<concentration_size, concentration_size>(
514 concentration_index, concentration_index);
515 auto MCp =
516 local_M.template block<concentration_size, pressure_size>(
517 concentration_index, pressure_index);
518 auto MpC =
519 local_M.template block<pressure_size, concentration_size>(
520 pressure_index, concentration_index);
521
522 auto local_C = Eigen::Map<const NodalVectorType>(
523 &local_x[concentration_index], concentration_size);
524
525 assembleBlockMatrices(b, component_id, t, dt, local_C, local_p, KCC,
526 MCC, MCp, MpC, Kpp, Mpp, Bp);
527
529 {
530 auto const stoichiometric_matrix =
533
534 assert(stoichiometric_matrix);
535
536 for (Eigen::SparseMatrix<double>::InnerIterator it(
537 *stoichiometric_matrix, component_id);
538 it;
539 ++it)
540 {
541 auto const stoichiometric_coefficient = it.value();
542 auto const coupled_component_id = it.row();
543 auto const kinetic_prefactor =
545 ->getKineticPrefactor(coupled_component_id);
546
547 auto const concentration_index =
548 pressure_size + component_id * concentration_size;
549 auto const coupled_concentration_index =
551 coupled_component_id * concentration_size;
552 auto KCmCn = local_K.template block<concentration_size,
554 concentration_index, coupled_concentration_index);
555
556 // account for the coupling between components
557 assembleKCmCn(component_id, t, dt, KCmCn,
558 stoichiometric_coefficient,
559 kinetic_prefactor);
560 }
561 }
562 }
563 }
virtual double getKineticPrefactor(std::size_t reaction_id) const
virtual Eigen::SparseMatrix< double > const * getStoichiometricMatrix() const
void assembleBlockMatrices(GlobalDimVectorType const &b, int const component_id, double const t, double const dt, Eigen::Ref< const NodalVectorType > const &C_nodal_values, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< LocalBlockMatrixType > KCC, Eigen::Ref< LocalBlockMatrixType > MCC, Eigen::Ref< LocalBlockMatrixType > MCp, Eigen::Ref< LocalBlockMatrixType > MpC, Eigen::Ref< LocalBlockMatrixType > Kpp, Eigen::Ref< LocalBlockMatrixType > Mpp, Eigen::Ref< LocalSegmentVectorType > Bp)
void assembleKCmCn(int const component_id, double const t, double const dt, Eigen::Ref< LocalBlockMatrixType > KCmCn, double const stoichiometric_coefficient, double const kinetic_prefactor)
Eigen::Map< Vector > createZeroedVector(std::vector< double > &data, Eigen::VectorXd::Index size)
Eigen::Map< Matrix > createZeroedMatrix(std::vector< double > &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)
std::vector< Eigen::VectorXd > const projected_specific_body_force_vectors
Projected specific body force vector: R * R^T * b.

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_transport_process_variables, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleBlockMatrices(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleKCmCn(), ProcessLib::ComponentTransport::ComponentTransportProcessData::chemical_solver_interface, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), MeshLib::Element::getID(), ChemistryLib::ChemicalSolverInterface::getKineticPrefactor(), ChemistryLib::ChemicalSolverInterface::getStoichiometricMatrix(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_size, and ProcessLib::ComponentTransport::ComponentTransportProcessData::projected_specific_body_force_vectors.

◆ assembleBlockMatrices()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleBlockMatrices ( GlobalDimVectorType const & b,
int const component_id,
double const t,
double const dt,
Eigen::Ref< const NodalVectorType > const & C_nodal_values,
Eigen::Ref< const NodalVectorType > const & p_nodal_values,
Eigen::Ref< LocalBlockMatrixType > KCC,
Eigen::Ref< LocalBlockMatrixType > MCC,
Eigen::Ref< LocalBlockMatrixType > MCp,
Eigen::Ref< LocalBlockMatrixType > MpC,
Eigen::Ref< LocalBlockMatrixType > Kpp,
Eigen::Ref< LocalBlockMatrixType > Mpp,
Eigen::Ref< LocalSegmentVectorType > Bp )
inline

Definition at line 565 of file ComponentTransportFEM.h.

577 {
578 unsigned const n_integration_points =
580
583
585
586 // Get material properties
587 auto const& medium =
589 // Select the only valid for component transport liquid phase.
590 auto const& phase = medium.phase("AqueousLiquid");
591
592 // Assume that the component name is the same as the process variable
593 // name. Components are shifted by one because the first one is always
594 // pressure.
595 auto const& component = phase.component(
596 _transport_process_variables[component_id].get().getName());
597
598 LocalBlockMatrixType KCC_Laplacian =
599 LocalBlockMatrixType::Zero(concentration_size, concentration_size);
600
601 std::vector<GlobalDimVectorType> ip_flux_vector;
602 double average_velocity_norm = 0.0;
604 {
605 ip_flux_vector.reserve(n_integration_points);
606 }
607
608 auto const& Ns =
610 .NsHigherOrder<typename ShapeFunction::MeshElement>();
611
612 for (unsigned ip(0); ip < n_integration_points; ++ip)
613 {
614 auto& ip_data = _ip_data[ip];
615 auto const& dNdx = ip_data.dNdx;
616 auto const& N = Ns[ip];
617 auto const& w = ip_data.integration_weight;
618 auto& porosity = ip_data.porosity;
619
620 double C_int_pt = 0.0;
621 double p_int_pt = 0.0;
622
623 NumLib::shapeFunctionInterpolate(C_nodal_values, N, C_int_pt);
624 NumLib::shapeFunctionInterpolate(p_nodal_values, N, p_int_pt);
625
626 // set position with N as the shape matrix at the current
627 // integration point
629 NumLib::interpolateCoordinates<ShapeFunction,
631 N)));
632
633 vars.concentration = C_int_pt;
634 vars.liquid_phase_pressure = p_int_pt;
635
636 // update according to a particular porosity model
638 .template value<double>(vars, pos, t, dt);
639 vars.porosity = porosity;
640
641 auto const& retardation_factor =
643 .template value<double>(vars, pos, t, dt);
644
645 auto const& solute_dispersivity_transverse = medium.template value<
646 double>(
648
649 auto const& solute_dispersivity_longitudinal =
650 medium.template value<double>(
652 longitudinal_dispersivity);
653
654 // Use the fluid density model to compute the density
655 // TODO (renchao): concentration of which component as the argument
656 // for calculation of fluid density
657 auto const density =
659 .template value<double>(vars, pos, t, dt);
660
661 auto const decay_rate =
663 .template value<double>(vars, pos, t, dt);
664
665 auto const& pore_diffusion_coefficient =
668 .value(vars, pos, t, dt));
669
672 vars, pos, t, dt));
673
674 // Use the viscosity model to compute the viscosity
676 .template value<double>(vars, pos, t, dt);
677
678 GlobalDimMatrixType const K_over_mu = K / mu;
679 GlobalDimVectorType const velocity =
681 ? GlobalDimVectorType(-K_over_mu *
682 (dNdx * p_nodal_values - density * b))
683 : GlobalDimVectorType(-K_over_mu * dNdx * p_nodal_values);
684
685 const double drho_dp =
687 .template dValue<double>(
688 vars,
690 pos, t, dt);
691
692 const double drho_dC =
694 .template dValue<double>(
696 t, dt);
697
698 GlobalDimMatrixType const hydrodynamic_dispersion =
701 pore_diffusion_coefficient, velocity, porosity,
702 solute_dispersivity_transverse,
703 solute_dispersivity_longitudinal);
704
705 const double R_times_phi(retardation_factor * porosity);
706 GlobalDimVectorType const mass_density_flow = velocity * density;
707 auto const N_t_N = (N.transpose() * N).eval();
708
710 {
711 MCp.noalias() += N_t_N * (C_int_pt * R_times_phi * drho_dp * w);
712 MCC.noalias() += N_t_N * (C_int_pt * R_times_phi * drho_dC * w);
713 KCC.noalias() -= dNdx.transpose() * mass_density_flow * N * w;
714 }
715 else
716 {
717 ip_flux_vector.emplace_back(mass_density_flow);
718 average_velocity_norm += velocity.norm();
719 }
720 MCC.noalias() += N_t_N * (R_times_phi * density * w);
721 KCC.noalias() += N_t_N * (decay_rate * R_times_phi * density * w);
722 KCC_Laplacian.noalias() +=
723 dNdx.transpose() * hydrodynamic_dispersion * dNdx * density * w;
724
725 MpC.noalias() += N_t_N * (porosity * drho_dC * w);
726
727 // Calculate Mpp, Kpp, and bp in the first loop over components
728 if (component_id == 0)
729 {
730 Mpp.noalias() += N_t_N * (porosity * drho_dp * w);
731 Kpp.noalias() +=
732 dNdx.transpose() * K_over_mu * dNdx * (density * w);
733
735 {
736 Bp.noalias() += dNdx.transpose() * K_over_mu * b *
737 (density * density * w);
738 }
739 }
740 }
741
743 {
745 typename ShapeFunction::MeshElement>(
747 _ip_data,
749 ip_flux_vector,
750 average_velocity_norm /
751 static_cast<double>(n_integration_points),
752 KCC_Laplacian);
753 }
754
755 KCC.noalias() += KCC_Laplacian;
756 }
std::string getName(std::string const &line)
Returns the name/title from the "Zone"-description.
Phase const & phase(std::size_t index) const
Definition Medium.cpp:33
Component const & component(std::size_t const &index) const
Definition Phase.cpp:33
auto const & NsHigherOrder() const
void setCoordinates(MathLib::Point3d const &coordinates)
typename ShapeMatricesType::GlobalDimVectorType GlobalDimVectorType
typename ShapeMatricesType::template MatrixType< pressure_size, pressure_size > LocalBlockMatrixType
typename ShapeMatricesType::GlobalDimMatrixType GlobalDimMatrixType
Eigen::Matrix< double, GlobalDim, GlobalDim > formEigenTensor(MaterialPropertyLib::PropertyDataType const &values)
@ transversal_dispersivity
used to compute the hydrodynamic dispersion tensor.
@ retardation_factor
specify retardation factor used in component transport process.
void shapeFunctionInterpolate(const NodalValues &, const ShapeMatrix &)
void assembleAdvectionMatrix(IPData const &ip_data_vector, NumLib::ShapeMatrixCache const &shape_matrix_cache, std::vector< FluxVectorType > const &ip_flux_vector, Eigen::MatrixBase< Derived > &laplacian_matrix)
Eigen::MatrixXd computeHydrodynamicDispersion(NumericalStabilization const &stabilizer, std::size_t const element_id, Eigen::MatrixXd const &pore_diffusion_coefficient, Eigen::VectorXd const &velocity, double const porosity, double const solute_dispersivity_transverse, double const solute_dispersivity_longitudinal)
std::array< double, 3 > interpolateCoordinates(MeshLib::Element const &e, typename ShapeMatricesType::ShapeMatrices::ShapeType const &N)
auto & get(Tuples &... ts)
Definition Get.h:59
NumLib::ShapeMatrixCache shape_matrix_cache
caches for each mesh element type the shape matrix

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_transport_process_variables, NumLib::detail::assembleAdvectionMatrix(), MaterialPropertyLib::Phase::component(), NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::concentration, MaterialPropertyLib::VariableArray::concentration, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MaterialPropertyLib::decay_rate, MaterialPropertyLib::density, MaterialPropertyLib::formEigenTensor(), MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), getName(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::has_gravity, NumLib::interpolateCoordinates(), MaterialPropertyLib::liquid_phase_pressure, MaterialPropertyLib::VariableArray::liquid_phase_pressure, ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, ProcessLib::ComponentTransport::ComponentTransportProcessData::non_advective_form, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::permeability, MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::pore_diffusion, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, MaterialPropertyLib::retardation_factor, ParameterLib::SpatialPosition::setCoordinates(), ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, NumLib::detail::shapeFunctionInterpolate(), ProcessLib::ComponentTransport::ComponentTransportProcessData::stabilizer, MaterialPropertyLib::transversal_dispersivity, and MaterialPropertyLib::viscosity.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assemble().

◆ assembleComponentTransportEquation()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleComponentTransportEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & ,
int const transport_process_id )
inline

Definition at line 1092 of file ComponentTransportFEM.h.

1097 {
1098 assert(static_cast<int>(local_x.size()) ==
1101 static_cast<int>(_transport_process_variables.size()) +
1103
1104 auto const local_p =
1105 local_x.template segment<pressure_size>(pressure_index);
1106
1107 NodalVectorType local_T = getLocalTemperature(t, local_x);
1108
1109 auto const local_C = local_x.template segment<concentration_size>(
1111 (transport_process_id - (_process_data.isothermal ? 1 : 2)) *
1113 auto const local_p_prev =
1114 local_x_prev.segment<pressure_size>(pressure_index);
1115
1117 local_M_data, concentration_size, concentration_size);
1119 local_K_data, concentration_size, concentration_size);
1120
1121 LocalBlockMatrixType KCC_Laplacian =
1122 LocalBlockMatrixType::Zero(concentration_size, concentration_size);
1123
1124 unsigned const n_integration_points =
1126
1127 std::vector<GlobalDimVectorType> ip_flux_vector;
1128 double average_velocity_norm = 0.0;
1130 {
1131 ip_flux_vector.reserve(n_integration_points);
1132 }
1133
1136
1137 auto const& b =
1140
1143
1144 auto const& medium =
1146 auto const& phase = medium.phase("AqueousLiquid");
1147 auto const component_id =
1148 transport_process_id - (_process_data.isothermal ? 1 : 2);
1149 auto const& component = phase.component(
1150 _transport_process_variables[component_id].get().getName());
1151
1152 auto const& Ns =
1154 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1155
1156 for (unsigned ip(0); ip < n_integration_points; ++ip)
1157 {
1158 auto& ip_data = _ip_data[ip];
1159 auto const& dNdx = ip_data.dNdx;
1160 auto const& w = ip_data.integration_weight;
1161 auto const& N = Ns[ip];
1162 auto& porosity = ip_data.porosity;
1163 auto const& porosity_prev = ip_data.porosity_prev;
1164
1165 double const C_int_pt = N.dot(local_C);
1166 double const p_int_pt = N.dot(local_p);
1167 double const T_int_pt = N.dot(local_T);
1168
1169 vars.concentration = C_int_pt;
1170 vars.liquid_phase_pressure = p_int_pt;
1171 vars.temperature = T_int_pt;
1172
1174 {
1175 vars.temperature = N.dot(local_T);
1176 }
1177
1178 // porosity
1179 {
1180 vars_prev.porosity = porosity_prev;
1181
1182 porosity =
1184 ? porosity_prev
1186 .template value<double>(vars, vars_prev, pos, t,
1187 dt);
1188
1189 vars.porosity = porosity;
1190 }
1191
1192 auto const& retardation_factor =
1194 .template value<double>(vars, pos, t, dt);
1195
1196 auto const& solute_dispersivity_transverse = medium.template value<
1197 double>(
1199 auto const& solute_dispersivity_longitudinal =
1200 medium.template value<double>(
1202 longitudinal_dispersivity);
1203
1204 // Use the fluid density model to compute the density
1205 auto const density =
1207 .template value<double>(vars, pos, t, dt);
1208 auto const decay_rate =
1210 .template value<double>(vars, pos, t, dt);
1211
1212 auto const& pore_diffusion_coefficient =
1215 .value(vars, pos, t, dt));
1216
1219 vars, pos, t, dt));
1220 // Use the viscosity model to compute the viscosity
1222 .template value<double>(vars, pos, t, dt);
1223
1224 GlobalDimMatrixType const K_over_mu = K / mu;
1225 GlobalDimVectorType const velocity =
1227 ? GlobalDimVectorType(-K_over_mu *
1228 (dNdx * local_p - density * b))
1229 : GlobalDimVectorType(-K_over_mu * dNdx * local_p);
1230
1231 GlobalDimMatrixType const hydrodynamic_dispersion =
1234 pore_diffusion_coefficient, velocity, porosity,
1235 solute_dispersivity_transverse,
1236 solute_dispersivity_longitudinal);
1237
1238 double const R_times_phi = retardation_factor * porosity;
1239 auto const N_t_N = (N.transpose() * N).eval();
1240
1242 {
1243 const double drho_dC =
1245 .template dValue<double>(
1247 pos, t, dt);
1248 local_M.noalias() +=
1249 N_t_N * (R_times_phi * C_int_pt * drho_dC * w);
1250 }
1251
1252 local_M.noalias() += N_t_N * (R_times_phi * density * w);
1253
1254 // coupling term
1256 {
1257 double const p_dot = (p_int_pt - N.dot(local_p_prev)) / dt;
1258
1259 const double drho_dp =
1261 .template dValue<double>(vars,
1263 liquid_phase_pressure,
1264 pos, t, dt);
1265
1266 local_K.noalias() +=
1267 N_t_N * ((R_times_phi * drho_dp * p_dot) * w) -
1268 dNdx.transpose() * velocity * N * (density * w);
1269 }
1270 else
1271 {
1272 ip_flux_vector.emplace_back(velocity * density);
1273 average_velocity_norm += velocity.norm();
1274 }
1275 local_K.noalias() +=
1276 N_t_N * (decay_rate * R_times_phi * density * w);
1277
1278 KCC_Laplacian.noalias() += dNdx.transpose() *
1279 hydrodynamic_dispersion * dNdx *
1280 (density * w);
1281 }
1282
1284 {
1286 typename ShapeFunction::MeshElement>(
1288 _process_data.shape_matrix_cache, ip_flux_vector,
1289 average_velocity_norm /
1290 static_cast<double>(n_integration_points),
1291 KCC_Laplacian);
1292 }
1293 local_K.noalias() += KCC_Laplacian;
1294 }
NodalVectorType getLocalTemperature(double const t, Eigen::VectorXd const &local_x)
typename ShapeMatricesType::NodalVectorType NodalVectorType

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_transport_process_variables, NumLib::detail::assembleAdvectionMatrix(), ProcessLib::ComponentTransport::ComponentTransportProcessData::chemically_induced_porosity_change, MaterialPropertyLib::Phase::component(), NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::concentration, MaterialPropertyLib::VariableArray::concentration, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MathLib::createZeroedMatrix(), MaterialPropertyLib::decay_rate, MaterialPropertyLib::density, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MaterialPropertyLib::formEigenTensor(), MeshLib::Element::getID(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getLocalTemperature(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), getName(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::has_gravity, ProcessLib::ComponentTransport::ComponentTransportProcessData::isothermal, MaterialPropertyLib::VariableArray::liquid_phase_pressure, ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, ProcessLib::ComponentTransport::ComponentTransportProcessData::non_advective_form, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::permeability, MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::pore_diffusion, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_size, ProcessLib::ComponentTransport::ComponentTransportProcessData::projected_specific_body_force_vectors, MaterialPropertyLib::retardation_factor, ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, ProcessLib::ComponentTransport::ComponentTransportProcessData::stabilizer, MaterialPropertyLib::VariableArray::temperature, ProcessLib::ComponentTransport::ComponentTransportProcessData::temperature, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::temperature_size, MaterialPropertyLib::transversal_dispersivity, and MaterialPropertyLib::viscosity.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleForStaggeredScheme().

◆ assembleForStaggeredScheme()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleForStaggeredScheme ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
int const process_id,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 812 of file ComponentTransportFEM.h.

819 {
820 if (process_id == _process_data.hydraulic_process_id)
821 {
822 assembleHydraulicEquation(t, dt, local_x, local_x_prev,
823 local_M_data, local_K_data, local_b_data);
824 }
825 else if (process_id == _process_data.thermal_process_id)
826 {
827 assembleHeatTransportEquation(t, dt, local_x, local_x_prev,
828 local_M_data, local_K_data,
829 local_b_data);
830 }
831 else
832 {
833 // Go for assembling in an order of transport process id.
834 assembleComponentTransportEquation(t, dt, local_x, local_x_prev,
835 local_M_data, local_K_data,
836 local_b_data, process_id);
837 }
838 }
void assembleHeatTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &)
void assembleHydraulicEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
void assembleComponentTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &, int const transport_process_id)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHydraulicEquation(), ProcessLib::ComponentTransport::ComponentTransportProcessData::hydraulic_process_id, and ProcessLib::ComponentTransport::ComponentTransportProcessData::thermal_process_id.

◆ assembleHeatTransportEquation()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & ,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > &  )
inline

Definition at line 966 of file ComponentTransportFEM.h.

972 {
973 assert(local_x.size() ==
975
976 auto const local_p =
977 local_x.template segment<pressure_size>(pressure_index);
978 auto const local_T =
979 local_x.template segment<temperature_size>(temperature_index);
980
982 local_M_data, temperature_size, temperature_size);
984 local_K_data, temperature_size, temperature_size);
985
987 pos.setElementID(this->_element.getID());
988
989 auto const& process_data = this->_process_data;
990 auto const& medium =
991 *process_data.media_map.getMedium(this->_element.getID());
992 auto const& liquid_phase = medium.phase("AqueousLiquid");
993
994 auto const& b =
997
999
1000 unsigned const n_integration_points =
1002
1003 std::vector<GlobalDimVectorType> ip_flux_vector;
1004 double average_velocity_norm = 0.0;
1005 ip_flux_vector.reserve(n_integration_points);
1006
1007 auto const& Ns =
1009 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1010
1011 for (unsigned ip(0); ip < n_integration_points; ip++)
1012 {
1013 auto const& ip_data = this->_ip_data[ip];
1014 auto const& dNdx = ip_data.dNdx;
1015 auto const& w = ip_data.integration_weight;
1016 auto const& N = Ns[ip];
1017
1018 double p_at_xi = 0.;
1019 NumLib::shapeFunctionInterpolate(local_p, N, p_at_xi);
1020 double T_at_xi = 0.;
1021 NumLib::shapeFunctionInterpolate(local_T, N, T_at_xi);
1022
1023 vars.temperature = T_at_xi;
1024 vars.liquid_phase_pressure = p_at_xi;
1025
1026 vars.liquid_saturation = 1.0;
1027
1028 auto const porosity =
1030 .template value<double>(vars, pos, t, dt);
1031 vars.porosity = porosity;
1032
1033 // Use the fluid density model to compute the density
1034 auto const fluid_density =
1035 liquid_phase
1037 .template value<double>(vars, pos, t, dt);
1038 vars.density = fluid_density;
1039 auto const specific_heat_capacity_fluid =
1040 liquid_phase
1042 .template value<double>(vars, pos, t, dt);
1043
1044 // Assemble mass matrix
1045 local_M.noalias() += w *
1047 vars, porosity, fluid_density,
1048 specific_heat_capacity_fluid, pos, t, dt) *
1049 N.transpose() * N;
1050
1051 // Assemble Laplace matrix
1052 auto const viscosity =
1053 liquid_phase
1055 .template value<double>(vars, pos, t, dt);
1056
1057 auto const intrinsic_permeability =
1059 medium
1060 .property(
1062 .value(vars, pos, t, dt));
1063
1064 GlobalDimMatrixType const K_over_mu =
1065 intrinsic_permeability / viscosity;
1066 GlobalDimVectorType const velocity =
1067 process_data.has_gravity
1068 ? GlobalDimVectorType(-K_over_mu *
1069 (dNdx * local_p - fluid_density * b))
1070 : GlobalDimVectorType(-K_over_mu * dNdx * local_p);
1071
1072 GlobalDimMatrixType const thermal_conductivity_dispersivity =
1074 vars, fluid_density, specific_heat_capacity_fluid, velocity,
1075 pos, t, dt);
1076
1077 local_K.noalias() +=
1078 w * dNdx.transpose() * thermal_conductivity_dispersivity * dNdx;
1079
1080 ip_flux_vector.emplace_back(velocity * fluid_density *
1081 specific_heat_capacity_fluid);
1082 average_velocity_norm += velocity.norm();
1083 }
1084
1086 process_data.stabilizer, this->_ip_data,
1087 _process_data.shape_matrix_cache, ip_flux_vector,
1088 average_velocity_norm / static_cast<double>(n_integration_points),
1089 local_K);
1090 }
GlobalDimMatrixType getThermalConductivityDispersivity(MaterialPropertyLib::VariableArray const &vars, const double fluid_density, const double specific_heat_capacity_fluid, const GlobalDimVectorType &velocity, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
double getHeatEnergyCoefficient(MaterialPropertyLib::VariableArray const &vars, const double porosity, const double fluid_density, const double specific_heat_capacity_fluid, ParameterLib::SpatialPosition const &pos, double const t, double const dt)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, NumLib::detail::assembleAdvectionMatrix(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MathLib::createZeroedMatrix(), MaterialPropertyLib::density, MaterialPropertyLib::VariableArray::density, MaterialPropertyLib::formEigenTensor(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getHeatEnergyCoefficient(), MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getThermalConductivityDispersivity(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::VariableArray::liquid_saturation, ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::permeability, MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_size, ProcessLib::ComponentTransport::ComponentTransportProcessData::projected_specific_body_force_vectors, ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, NumLib::detail::shapeFunctionInterpolate(), MaterialPropertyLib::specific_heat_capacity, MaterialPropertyLib::VariableArray::temperature, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::temperature_index, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::temperature_size, and MaterialPropertyLib::viscosity.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleForStaggeredScheme().

◆ assembleHydraulicEquation()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHydraulicEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
inline

Definition at line 840 of file ComponentTransportFEM.h.

847 {
848 auto const local_p =
849 local_x.template segment<pressure_size>(pressure_index);
850 auto const local_C = local_x.template segment<concentration_size>(
852 auto const local_C_prev =
853 local_x_prev.segment<concentration_size>(first_concentration_index);
854
855 NodalVectorType local_T = getLocalTemperature(t, local_x);
856
858 local_M_data, pressure_size, pressure_size);
860 local_K_data, pressure_size, pressure_size);
862 local_b_data, pressure_size);
863
864 unsigned const n_integration_points =
866
869
870 auto const& b =
873
874 auto const& medium =
876 auto const& phase = medium.phase("AqueousLiquid");
877
880
881 auto const& Ns =
883 .NsHigherOrder<typename ShapeFunction::MeshElement>();
884
885 for (unsigned ip(0); ip < n_integration_points; ++ip)
886 {
887 auto& ip_data = _ip_data[ip];
888 auto const& dNdx = ip_data.dNdx;
889 auto const& w = ip_data.integration_weight;
890 auto const& N = Ns[ip];
891 auto& porosity = ip_data.porosity;
892 auto const& porosity_prev = ip_data.porosity_prev;
893
894 double const C_int_pt = N.dot(local_C);
895 double const p_int_pt = N.dot(local_p);
896 double const T_int_pt = N.dot(local_T);
897
898 vars.concentration = C_int_pt;
899 vars.liquid_phase_pressure = p_int_pt;
900 vars.temperature = T_int_pt;
901
902 // porosity
903 {
904 vars_prev.porosity = porosity_prev;
905
906 porosity =
908 ? porosity_prev
910 .template value<double>(vars, vars_prev, pos, t,
911 dt);
912
913 vars.porosity = porosity;
914 }
915
916 // Use the fluid density model to compute the density
917 // TODO: Concentration of which component as one of arguments for
918 // calculation of fluid density
919 auto const density =
921 .template value<double>(vars, pos, t, dt);
922
925 vars, pos, t, dt));
926
927 // Use the viscosity model to compute the viscosity
929 .template value<double>(vars, pos, t, dt);
930
931 GlobalDimMatrixType const K_over_mu = K / mu;
932
933 const double drho_dp =
935 .template dValue<double>(
936 vars,
938 pos, t, dt);
939 const double drho_dC =
941 .template dValue<double>(
943 t, dt);
944
945 // matrix assembly
946 local_M.noalias() += w * N.transpose() * porosity * drho_dp * N;
947 local_K.noalias() +=
948 w * dNdx.transpose() * density * K_over_mu * dNdx;
949
951 {
952 local_b.noalias() +=
953 w * density * density * dNdx.transpose() * K_over_mu * b;
954 }
955
956 // coupling term
957 {
958 double const C_dot = (C_int_pt - N.dot(local_C_prev)) / dt;
959
960 local_b.noalias() -=
961 w * N.transpose() * porosity * drho_dC * C_dot;
962 }
963 }
964 }

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemically_induced_porosity_change, MaterialPropertyLib::concentration, MaterialPropertyLib::VariableArray::concentration, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), MaterialPropertyLib::density, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MaterialPropertyLib::formEigenTensor(), MeshLib::Element::getID(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getLocalTemperature(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::has_gravity, MaterialPropertyLib::liquid_phase_pressure, MaterialPropertyLib::VariableArray::liquid_phase_pressure, ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::permeability, MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_size, ProcessLib::ComponentTransport::ComponentTransportProcessData::projected_specific_body_force_vectors, ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, MaterialPropertyLib::VariableArray::temperature, and MaterialPropertyLib::viscosity.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleForStaggeredScheme().

◆ assembleKCmCn()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleKCmCn ( int const component_id,
double const t,
double const dt,
Eigen::Ref< LocalBlockMatrixType > KCmCn,
double const stoichiometric_coefficient,
double const kinetic_prefactor )
inline

Definition at line 758 of file ComponentTransportFEM.h.

762 {
763 unsigned const n_integration_points =
765
768
770
771 auto const& medium =
773 auto const& phase = medium.phase("AqueousLiquid");
774 auto const& component = phase.component(
775 _transport_process_variables[component_id].get().getName());
776
777 auto const& Ns =
779 .NsHigherOrder<typename ShapeFunction::MeshElement>();
780
781 for (unsigned ip(0); ip < n_integration_points; ++ip)
782 {
783 auto& ip_data = _ip_data[ip];
784 auto const& w = ip_data.integration_weight;
785 auto const& N = Ns[ip];
786 auto& porosity = ip_data.porosity;
787
788 // set position with N as the shape matrix at the current
789 // integration point
791 NumLib::interpolateCoordinates<ShapeFunction,
793 N)));
794
795 auto const retardation_factor =
797 .template value<double>(vars, pos, t, dt);
798
800 .template value<double>(vars, pos, t, dt);
801
802 auto const density =
804 .template value<double>(vars, pos, t, dt);
805
806 KCmCn.noalias() -= w * N.transpose() * stoichiometric_coefficient *
807 kinetic_prefactor * retardation_factor *
808 porosity * density * N;
809 }
810 }

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_transport_process_variables, MaterialPropertyLib::Phase::component(), MaterialPropertyLib::density, MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), getName(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), NumLib::interpolateCoordinates(), ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::porosity, MaterialPropertyLib::retardation_factor, ParameterLib::SpatialPosition::setCoordinates(), ParameterLib::SpatialPosition::setElementID(), and ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assemble().

◆ assembleReactionEquationConcrete()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleReactionEquationConcrete ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data,
int const transport_process_id )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 1571 of file ComponentTransportFEM.h.

1576 {
1577 auto const local_C = local_x.template segment<concentration_size>(
1579 (transport_process_id - 1) * concentration_size);
1580
1582 local_M_data, concentration_size, concentration_size);
1584 local_K_data, concentration_size, concentration_size);
1586 local_b_data, concentration_size);
1587
1588 unsigned const n_integration_points =
1590
1593
1596
1597 auto const& medium =
1599 auto const component_id = transport_process_id - 1;
1600
1601 auto const& Ns =
1603 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1604
1605 for (unsigned ip(0); ip < n_integration_points; ++ip)
1606 {
1607 auto& ip_data = _ip_data[ip];
1608 auto const w = ip_data.integration_weight;
1609 auto const& N = Ns[ip];
1610 auto& porosity = ip_data.porosity;
1611 auto const& porosity_prev = ip_data.porosity_prev;
1612 auto const chemical_system_id = ip_data.chemical_system_id;
1613
1614 double C_int_pt = 0.0;
1615 NumLib::shapeFunctionInterpolate(local_C, N, C_int_pt);
1616
1617 vars.concentration = C_int_pt;
1618
1619 auto const porosity_dot = (porosity - porosity_prev) / dt;
1620
1621 // porosity
1622 {
1623 vars_prev.porosity = porosity_prev;
1624
1625 porosity =
1627 ? porosity_prev
1629 .template value<double>(vars, vars_prev, pos, t,
1630 dt);
1631 }
1632
1633 local_M.noalias() += w * N.transpose() * porosity * N;
1634
1635 local_K.noalias() += w * N.transpose() * porosity_dot * N;
1636
1637 if (chemical_system_id == -1)
1638 {
1639 continue;
1640 }
1641
1642 auto const C_post_int_pt =
1644 component_id, chemical_system_id);
1645
1646 local_b.noalias() +=
1647 w * N.transpose() * porosity * (C_post_int_pt - C_int_pt) / dt;
1648 }
1649 }
virtual double getConcentration(int const, GlobalIndexType const) const

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemical_solver_interface, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemically_induced_porosity_change, MaterialPropertyLib::VariableArray::concentration, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, ChemistryLib::ChemicalSolverInterface::getConcentration(), MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, and NumLib::detail::shapeFunctionInterpolate().

◆ assembleWithJacobianComponentTransportEquation()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianComponentTransportEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
std::vector< double > & local_b_data,
std::vector< double > & local_Jac_data,
int const component_id )
inline

Definition at line 1423 of file ComponentTransportFEM.h.

1427 {
1428 auto const concentration_index =
1430
1431 auto const p = local_x.template segment<pressure_size>(pressure_index);
1432 auto const c =
1433 local_x.template segment<concentration_size>(concentration_index);
1434 auto const c_prev =
1435 local_x_prev.segment<concentration_size>(concentration_index);
1436
1439 {
1441 }
1442
1444 local_Jac_data, concentration_size, concentration_size);
1446 local_b_data, concentration_size);
1447
1448 LocalBlockMatrixType KCC_Laplacian =
1449 LocalBlockMatrixType::Zero(concentration_size, concentration_size);
1450
1451 unsigned const n_integration_points =
1453
1454 std::vector<GlobalDimVectorType> ip_flux_vector;
1455 double average_velocity_norm = 0.0;
1456 ip_flux_vector.reserve(n_integration_points);
1457
1460
1461 auto const& b =
1464
1467
1468 auto const& medium =
1470 auto const& phase = medium.phase("AqueousLiquid");
1471 auto const& component = phase.component(
1472 _transport_process_variables[component_id].get().getName());
1473
1474 auto const& Ns =
1476 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1477
1478 for (unsigned ip(0); ip < n_integration_points; ++ip)
1479 {
1480 auto& ip_data = _ip_data[ip];
1481 auto const& dNdx = ip_data.dNdx;
1482 auto const& w = ip_data.integration_weight;
1483 auto const& N = Ns[ip];
1484 auto& phi = ip_data.porosity;
1485 auto const& phi_prev = ip_data.porosity_prev;
1486
1487 double const p_ip = N.dot(p);
1488 double const c_ip = N.dot(c);
1489
1490 vars.liquid_phase_pressure = p_ip;
1491 vars.concentration = c_ip;
1492
1494 {
1495 vars.temperature = N.dot(T);
1496 }
1497
1498 // porosity
1499 {
1500 vars_prev.porosity = phi_prev;
1501
1503 ? phi_prev
1505 .template value<double>(vars, vars_prev, pos, t,
1506 dt);
1507
1508 vars.porosity = phi;
1509 }
1510
1511 auto const R =
1513 .template value<double>(vars, pos, t, dt);
1514
1515 auto const alpha_T = medium.template value<double>(
1517 auto const alpha_L = medium.template value<double>(
1519
1520 auto const rho = phase[MaterialPropertyLib::PropertyType::density]
1521 .template value<double>(vars, pos, t, dt);
1522 // first-order decay constant
1523 auto const alpha =
1525 .template value<double>(vars, pos, t, dt);
1526
1529 .value(vars, pos, t, dt));
1530
1533 vars, pos, t, dt));
1535 .template value<double>(vars, pos, t, dt);
1536 // Darcy flux
1537 GlobalDimVectorType const q =
1539 ? GlobalDimVectorType(-k / mu * (dNdx * p - rho * b))
1540 : GlobalDimVectorType(-k / mu * dNdx * p);
1541
1543 _process_data.stabilizer, _element.getID(), Dp, q, phi, alpha_T,
1544 alpha_L);
1545
1546 // matrix assembly
1547 local_Jac.noalias() +=
1548 w * rho * N.transpose() * phi * R * (alpha + 1 / dt) * N;
1549
1550 KCC_Laplacian.noalias() += w * rho * dNdx.transpose() * D * dNdx;
1551
1552 auto const cdot = (c - c_prev) / dt;
1553 local_rhs.noalias() -=
1554 w * rho * N.transpose() * phi * R * N * (cdot + alpha * c);
1555
1556 ip_flux_vector.emplace_back(q * rho);
1557 average_velocity_norm += q.norm();
1558 }
1559
1562 _process_data.shape_matrix_cache, ip_flux_vector,
1563 average_velocity_norm / static_cast<double>(n_integration_points),
1564 KCC_Laplacian);
1565
1566 local_rhs.noalias() -= KCC_Laplacian * c;
1567
1568 local_Jac.noalias() += KCC_Laplacian;
1569 }
@ longitudinal_dispersivity
used to compute the hydrodynamic dispersion tensor.
virtual Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > getNodalValuesOnElement(MeshLib::Element const &element, double const t) const
Returns a matrix of values for all nodes of the given element.
Definition Parameter.h:164

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_transport_process_variables, NumLib::detail::assembleAdvectionMatrix(), ProcessLib::ComponentTransport::ComponentTransportProcessData::chemically_induced_porosity_change, MaterialPropertyLib::Phase::component(), NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::VariableArray::concentration, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), MaterialPropertyLib::decay_rate, MaterialPropertyLib::density, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MaterialPropertyLib::formEigenTensor(), MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), getName(), ParameterLib::Parameter< T >::getNodalValuesOnElement(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::has_gravity, MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::longitudinal_dispersivity, ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::permeability, MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::pore_diffusion, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, ProcessLib::ComponentTransport::ComponentTransportProcessData::projected_specific_body_force_vectors, MaterialPropertyLib::retardation_factor, ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, ProcessLib::ComponentTransport::ComponentTransportProcessData::stabilizer, MaterialPropertyLib::VariableArray::temperature, ProcessLib::ComponentTransport::ComponentTransportProcessData::temperature, MaterialPropertyLib::transversal_dispersivity, and MaterialPropertyLib::viscosity.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianForStaggeredScheme().

◆ assembleWithJacobianForStaggeredScheme()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianForStaggeredScheme ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
int const process_id,
std::vector< double > & local_b_data,
std::vector< double > & local_Jac_data )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 1296 of file ComponentTransportFEM.h.

1301 {
1302 if (process_id == _process_data.hydraulic_process_id)
1303 {
1304 assembleWithJacobianHydraulicEquation(t, dt, local_x, local_x_prev,
1305 local_b_data, local_Jac_data);
1306 }
1307 else
1308 {
1309 int const component_id = process_id - 1;
1311 t, dt, local_x, local_x_prev, local_b_data, local_Jac_data,
1312 component_id);
1313 }
1314 }
void assembleWithJacobianHydraulicEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
void assembleWithJacobianComponentTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data, int const component_id)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianHydraulicEquation(), and ProcessLib::ComponentTransport::ComponentTransportProcessData::hydraulic_process_id.

◆ assembleWithJacobianHydraulicEquation()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianHydraulicEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
std::vector< double > & local_b_data,
std::vector< double > & local_Jac_data )
inline

Definition at line 1316 of file ComponentTransportFEM.h.

1320 {
1321 auto const p = local_x.template segment<pressure_size>(pressure_index);
1322 auto const c = local_x.template segment<concentration_size>(
1324
1325 auto const p_prev = local_x_prev.segment<pressure_size>(pressure_index);
1326 auto const c_prev =
1327 local_x_prev.segment<concentration_size>(first_concentration_index);
1328
1330 local_Jac_data, pressure_size, pressure_size);
1332 local_b_data, pressure_size);
1333
1334 unsigned const n_integration_points =
1336
1339 auto const& b =
1342
1343 auto const& medium =
1345 auto const& phase = medium.phase("AqueousLiquid");
1346
1349
1350 auto const& Ns =
1352 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1353
1354 for (unsigned ip(0); ip < n_integration_points; ++ip)
1355 {
1356 auto& ip_data = _ip_data[ip];
1357 auto const& dNdx = ip_data.dNdx;
1358 auto const& w = ip_data.integration_weight;
1359 auto const& N = Ns[ip];
1360 auto& phi = ip_data.porosity;
1361 auto const& phi_prev = ip_data.porosity_prev;
1362
1363 double const p_ip = N.dot(p);
1364 double const c_ip = N.dot(c);
1365
1366 double const cdot_ip = (c_ip - N.dot(c_prev)) / dt;
1367
1368 vars.liquid_phase_pressure = p_ip;
1369 vars.concentration = c_ip;
1370
1371 // porosity
1372 {
1373 vars_prev.porosity = phi_prev;
1374
1376 ? phi_prev
1378 .template value<double>(vars, vars_prev, pos, t,
1379 dt);
1380
1381 vars.porosity = phi;
1382 }
1383
1384 auto const rho = phase[MaterialPropertyLib::PropertyType::density]
1385 .template value<double>(vars, pos, t, dt);
1386
1389 vars, pos, t, dt));
1390
1392 .template value<double>(vars, pos, t, dt);
1393
1394 auto const drho_dp =
1396 .template dValue<double>(
1397 vars,
1399 pos, t, dt);
1400 auto const drho_dc =
1402 .template dValue<double>(
1404 t, dt);
1405
1406 // matrix assembly
1407 local_Jac.noalias() += w * N.transpose() * phi * drho_dp / dt * N +
1408 w * dNdx.transpose() * rho * k / mu * dNdx;
1409
1410 local_rhs.noalias() -=
1411 w * N.transpose() * phi *
1412 (drho_dp * N * p_prev + drho_dc * cdot_ip) +
1413 w * rho * dNdx.transpose() * k / mu * dNdx * p;
1414
1416 {
1417 local_rhs.noalias() +=
1418 w * rho * dNdx.transpose() * k / mu * rho * b;
1419 }
1420 }
1421 }

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemically_induced_porosity_change, MaterialPropertyLib::concentration, MaterialPropertyLib::VariableArray::concentration, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), MaterialPropertyLib::density, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MaterialPropertyLib::formEigenTensor(), MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::has_gravity, MaterialPropertyLib::liquid_phase_pressure, MaterialPropertyLib::VariableArray::liquid_phase_pressure, ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::permeability, MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_size, ProcessLib::ComponentTransport::ComponentTransportProcessData::projected_specific_body_force_vectors, ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, and MaterialPropertyLib::viscosity.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianForStaggeredScheme().

◆ calculateIntPtDarcyVelocity()

template<typename ShapeFunction , int GlobalDim>
std::vector< double > const & ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::calculateIntPtDarcyVelocity ( const double t,
Eigen::Ref< const NodalVectorType > const & p_nodal_values,
Eigen::Ref< const NodalVectorType > const & C_nodal_values,
std::vector< double > & cache ) const
inline

Definition at line 1693 of file ComponentTransportFEM.h.

1698 {
1699 auto const n_integration_points =
1701
1702 cache.clear();
1703 auto cache_mat = MathLib::createZeroedMatrix<
1704 Eigen::Matrix<double, GlobalDim, Eigen::Dynamic, Eigen::RowMajor>>(
1705 cache, GlobalDim, n_integration_points);
1706
1709
1710 auto const& b =
1713
1715
1716 auto const& medium =
1718 auto const& phase = medium.phase("AqueousLiquid");
1719
1720 auto const& Ns =
1722 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1723
1724 for (unsigned ip = 0; ip < n_integration_points; ++ip)
1725 {
1726 auto const& ip_data = _ip_data[ip];
1727 auto const& dNdx = ip_data.dNdx;
1728 auto const& N = Ns[ip];
1729 auto const& porosity = ip_data.porosity;
1730
1731 double C_int_pt = 0.0;
1732 double p_int_pt = 0.0;
1733
1734 NumLib::shapeFunctionInterpolate(C_nodal_values, N, C_int_pt);
1735 NumLib::shapeFunctionInterpolate(p_nodal_values, N, p_int_pt);
1736
1737 vars.concentration = C_int_pt;
1738 vars.liquid_phase_pressure = p_int_pt;
1739 vars.porosity = porosity;
1740
1741 // TODO (naumov) Temporary value not used by current material
1742 // models. Need extension of secondary variables interface.
1743 double const dt = std::numeric_limits<double>::quiet_NaN();
1746 vars, pos, t, dt));
1748 .template value<double>(vars, pos, t, dt);
1749 GlobalDimMatrixType const K_over_mu = K / mu;
1750
1751 cache_mat.col(ip).noalias() = -K_over_mu * dNdx * p_nodal_values;
1753 {
1754 auto const rho_w =
1756 .template value<double>(vars, pos, t, dt);
1757 // here it is assumed that the vector b is directed 'downwards'
1758 cache_mat.col(ip).noalias() += K_over_mu * rho_w * b;
1759 }
1760 }
1761
1762 return cache;
1763 }

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, MaterialPropertyLib::VariableArray::concentration, MathLib::createZeroedMatrix(), MaterialPropertyLib::density, MaterialPropertyLib::formEigenTensor(), MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::has_gravity, MaterialPropertyLib::VariableArray::liquid_phase_pressure, ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::permeability, MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::VariableArray::porosity, ProcessLib::ComponentTransport::ComponentTransportProcessData::projected_specific_body_force_vectors, ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, NumLib::detail::shapeFunctionInterpolate(), and MaterialPropertyLib::viscosity.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeSecondaryVariableConcrete(), and ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtDarcyVelocity().

◆ computeReactionRelatedSecondaryVariable()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeReactionRelatedSecondaryVariable ( std::size_t const ele_id)
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 1863 of file ComponentTransportFEM.h.

1865 {
1866 auto const n_integration_points =
1868
1870 {
1871 auto const& medium = *_process_data.media_map.getMedium(ele_id);
1872
1873 for (auto& ip_data : _ip_data)
1874 {
1875 ip_data.porosity = ip_data.porosity_prev;
1876
1878 ->updatePorosityPostReaction(ip_data.chemical_system_id,
1879 medium, ip_data.porosity);
1880 }
1881
1883 std::accumulate(_ip_data.begin(), _ip_data.end(), 0.,
1884 [](double const s, auto const& ip)
1885 { return s + ip.porosity; }) /
1886 n_integration_points;
1887 }
1888
1889 std::vector<GlobalIndexType> chemical_system_indices;
1890 chemical_system_indices.reserve(n_integration_points);
1891 std::transform(_ip_data.begin(), _ip_data.end(),
1892 std::back_inserter(chemical_system_indices),
1893 [](auto const& ip_data)
1894 { return ip_data.chemical_system_id; });
1895
1897 ele_id, chemical_system_indices);
1898 }
virtual void updatePorosityPostReaction(GlobalIndexType const &, MaterialPropertyLib::Medium const &, double &)
virtual void computeSecondaryVariable(std::size_t const, std::vector< GlobalIndexType > const &)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemical_solver_interface, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemically_induced_porosity_change, ChemistryLib::ChemicalSolverInterface::computeSecondaryVariable(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, ProcessLib::ComponentTransport::ComponentTransportProcessData::mesh_prop_porosity, and ChemistryLib::ChemicalSolverInterface::updatePorosityPostReaction().

◆ computeSecondaryVariableConcrete()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeSecondaryVariableConcrete ( double const t,
double const ,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const &  )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 1837 of file ComponentTransportFEM.h.

1842 {
1843 auto const local_p =
1844 local_x.template segment<pressure_size>(pressure_index);
1845 auto const local_C = local_x.template segment<concentration_size>(
1847
1848 std::vector<double> ele_velocity;
1849 calculateIntPtDarcyVelocity(t, local_p, local_C, ele_velocity);
1850
1851 auto const n_integration_points =
1853 auto const ele_velocity_mat =
1854 MathLib::toMatrix(ele_velocity, GlobalDim, n_integration_points);
1855
1856 auto const ele_id = _element.getID();
1857 Eigen::Map<LocalVectorType>(
1858 &(*_process_data.mesh_prop_velocity)[ele_id * GlobalDim],
1859 GlobalDim) =
1860 ele_velocity_mat.rowwise().sum() / n_integration_points;
1861 }
std::vector< double > const & calculateIntPtDarcyVelocity(const double t, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< const NodalVectorType > const &C_nodal_values, std::vector< double > &cache) const
Eigen::Map< const Matrix > toMatrix(std::vector< double > const &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::calculateIntPtDarcyVelocity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MeshLib::Element::getID(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::mesh_prop_velocity, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, and MathLib::toMatrix().

◆ getFlux()

template<typename ShapeFunction , int GlobalDim>
Eigen::Vector3d ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getFlux ( MathLib::Point3d const & ,
double const ,
std::vector< double > const &  ) const
inlineoverridevirtual

Computes the flux in the point p_local_coords that is given in local coordinates using the values from local_x. Fits to monolithic scheme.

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 1775 of file ComponentTransportFEM.h.

1778 {
1779 auto const local_p = Eigen::Map<const NodalVectorType>(
1780 &local_x[pressure_index], pressure_size);
1781 auto const local_C = Eigen::Map<const NodalVectorType>(
1783
1784 // Eval shape matrices at given point
1785 // Note: Axial symmetry is set to false here, because we only need dNdx
1786 // here, which is not affected by axial symmetry.
1787 auto const shape_matrices =
1789 GlobalDim>(
1790 _element, false /*is_axially_symmetric*/,
1791 std::array{pnt_local_coords})[0];
1792
1795 auto const& b =
1798
1800
1801 auto const& medium =
1803 auto const& phase = medium.phase("AqueousLiquid");
1804
1805 // local_x contains the local concentration and pressure values
1806 double c_int_pt;
1807 NumLib::shapeFunctionInterpolate(local_C, shape_matrices.N, c_int_pt);
1808 vars.concentration = c_int_pt;
1809
1810 double p_int_pt;
1811 NumLib::shapeFunctionInterpolate(local_p, shape_matrices.N, p_int_pt);
1812 vars.liquid_phase_pressure = p_int_pt;
1813
1814 // TODO (naumov) Temporary value not used by current material models.
1815 // Need extension of secondary variables interface.
1816 double const dt = std::numeric_limits<double>::quiet_NaN();
1819 vars, pos, t, dt));
1820
1822 .template value<double>(vars, pos, t, dt);
1823 GlobalDimMatrixType const K_over_mu = K / mu;
1824
1825 GlobalDimVectorType q = -K_over_mu * shape_matrices.dNdx * local_p;
1826 auto const rho_w = phase[MaterialPropertyLib::PropertyType::density]
1827 .template value<double>(vars, pos, t, dt);
1829 {
1830 q += K_over_mu * rho_w * b;
1831 }
1832 Eigen::Vector3d flux(0.0, 0.0, 0.0);
1833 flux.head<GlobalDim>() = rho_w * q;
1834 return flux;
1835 }
std::vector< typename ShapeMatricesType::ShapeMatrices, Eigen::aligned_allocator< typename ShapeMatricesType::ShapeMatrices > > computeShapeMatrices(MeshLib::Element const &e, bool const is_axially_symmetric, PointContainer const &points)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, NumLib::computeShapeMatrices(), MaterialPropertyLib::VariableArray::concentration, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MaterialPropertyLib::density, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MaterialPropertyLib::formEigenTensor(), MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), ProcessLib::ComponentTransport::ComponentTransportProcessData::has_gravity, MaterialPropertyLib::VariableArray::liquid_phase_pressure, ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, MaterialPropertyLib::permeability, MaterialPropertyLib::Medium::phase(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_size, ProcessLib::ComponentTransport::ComponentTransportProcessData::projected_specific_body_force_vectors, ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), and MaterialPropertyLib::viscosity.

◆ getHeatEnergyCoefficient()

template<typename ShapeFunction , int GlobalDim>
double ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getHeatEnergyCoefficient ( MaterialPropertyLib::VariableArray const & vars,
const double porosity,
const double fluid_density,
const double specific_heat_capacity_fluid,
ParameterLib::SpatialPosition const & pos,
double const t,
double const dt )
inlineprivate

Definition at line 2025 of file ComponentTransportFEM.h.

2030 {
2031 auto const& medium =
2033 auto const& solid_phase = medium.phase("Solid");
2034
2035 auto const specific_heat_capacity_solid =
2036 solid_phase
2037 .property(
2039 .template value<double>(vars, pos, t, dt);
2040
2041 auto const solid_density =
2042 solid_phase.property(MaterialPropertyLib::PropertyType::density)
2043 .template value<double>(vars, pos, t, dt);
2044
2045 return solid_density * specific_heat_capacity_solid * (1 - porosity) +
2046 fluid_density * specific_heat_capacity_fluid * porosity;
2047 }
Property const & property(PropertyType const &p) const
Definition Phase.cpp:53

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, MaterialPropertyLib::density, MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::Phase::property(), and MaterialPropertyLib::specific_heat_capacity.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation().

◆ getIntPtDarcyVelocity()

template<typename ShapeFunction , int GlobalDim>
std::vector< double > const & ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtDarcyVelocity ( const double t,
std::vector< GlobalVector * > const & x,
std::vector< NumLib::LocalToGlobalIndexMap const * > const & dof_table,
std::vector< double > & cache ) const
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 1651 of file ComponentTransportFEM.h.

1656 {
1657 assert(x.size() == dof_table.size());
1658
1659 auto const n_processes = x.size();
1660 std::vector<std::vector<double>> local_x;
1661 local_x.reserve(n_processes);
1662
1663 for (std::size_t process_id = 0; process_id < n_processes; ++process_id)
1664 {
1665 auto const indices =
1666 NumLib::getIndices(_element.getID(), *dof_table[process_id]);
1667 assert(!indices.empty());
1668 local_x.push_back(x[process_id]->get(indices));
1669 }
1670
1671 // only one process, must be monolithic.
1672 if (n_processes == 1)
1673 {
1674 auto const local_p = Eigen::Map<const NodalVectorType>(
1675 &local_x[0][pressure_index], pressure_size);
1676 auto const local_C = Eigen::Map<const NodalVectorType>(
1678 return calculateIntPtDarcyVelocity(t, local_p, local_C, cache);
1679 }
1680
1681 // multiple processes, must be staggered.
1682 {
1683 constexpr int pressure_process_id = 0;
1684 constexpr int concentration_process_id = 1;
1685 auto const local_p = Eigen::Map<const NodalVectorType>(
1686 &local_x[pressure_process_id][0], pressure_size);
1687 auto const local_C = Eigen::Map<const NodalVectorType>(
1688 &local_x[concentration_process_id][0], concentration_size);
1689 return calculateIntPtDarcyVelocity(t, local_p, local_C, cache);
1690 }
1691 }
std::vector< GlobalIndexType > getIndices(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::calculateIntPtDarcyVelocity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MeshLib::Element::getID(), NumLib::getIndices(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, and ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_size.

◆ getIntPtMolarFlux()

template<typename ShapeFunction , int GlobalDim>
std::vector< double > const & ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtMolarFlux ( const double t,
std::vector< GlobalVector * > const & x,
std::vector< NumLib::LocalToGlobalIndexMap const * > const & dof_tables,
std::vector< double > & cache,
int const component_id ) const
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 1900 of file ComponentTransportFEM.h.

1904 {
1905 std::vector<double> local_x_vec;
1906
1907 auto const n_processes = x.size();
1908 for (std::size_t process_id = 0; process_id < n_processes; ++process_id)
1909 {
1910 auto const indices =
1911 NumLib::getIndices(_element.getID(), *dof_tables[process_id]);
1912 assert(!indices.empty());
1913 auto const local_solution = x[process_id]->get(indices);
1914 local_x_vec.insert(std::end(local_x_vec),
1915 std::begin(local_solution),
1916 std::end(local_solution));
1917 }
1918 auto const local_x = MathLib::toVector(local_x_vec);
1919
1920 auto const p = local_x.template segment<pressure_size>(pressure_index);
1921 auto const c = local_x.template segment<concentration_size>(
1923
1924 auto const n_integration_points =
1926
1927 cache.clear();
1928 auto cache_mat = MathLib::createZeroedMatrix<
1929 Eigen::Matrix<double, GlobalDim, Eigen::Dynamic, Eigen::RowMajor>>(
1930 cache, GlobalDim, n_integration_points);
1931
1934
1935 auto const& b =
1938
1940
1941 auto const& medium =
1943 auto const& phase = medium.phase("AqueousLiquid");
1944
1945 auto const& component = phase.component(
1946 _transport_process_variables[component_id].get().getName());
1947
1948 auto const& Ns =
1950 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1951
1952 for (unsigned ip = 0; ip < n_integration_points; ++ip)
1953 {
1954 auto const& ip_data = _ip_data[ip];
1955 auto const& dNdx = ip_data.dNdx;
1956 auto const& N = Ns[ip];
1957 auto const& phi = ip_data.porosity;
1958
1959 double const p_ip = N.dot(p);
1960 double const c_ip = N.dot(c);
1961
1962 vars.concentration = c_ip;
1963 vars.liquid_phase_pressure = p_ip;
1964 vars.porosity = phi;
1965
1966 double const dt = std::numeric_limits<double>::quiet_NaN();
1967
1970 vars, pos, t, dt));
1972 .template value<double>(vars, pos, t, dt);
1973 auto const rho = phase[MaterialPropertyLib::PropertyType::density]
1974 .template value<double>(vars, pos, t, dt);
1975
1976 // Darcy flux
1977 GlobalDimVectorType const q =
1979 ? GlobalDimVectorType(-k / mu * (dNdx * p - rho * b))
1980 : GlobalDimVectorType(-k / mu * dNdx * p);
1981
1982 auto const alpha_T = medium.template value<double>(
1984 auto const alpha_L = medium.template value<double>(
1988 .value(vars, pos, t, dt));
1989
1990 // Hydrodynamic dispersion
1992 _process_data.stabilizer, _element.getID(), Dp, q, phi, alpha_T,
1993 alpha_L);
1994
1995 cache_mat.col(ip).noalias() = q * c_ip - D * dNdx * c;
1996 }
1997
1998 return cache;
1999 }
Eigen::Map< const Vector > toVector(std::vector< double > const &data, Eigen::VectorXd::Index size)
Creates an Eigen mapped vector from the given data vector.

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_transport_process_variables, MaterialPropertyLib::Phase::component(), NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::VariableArray::concentration, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, MathLib::createZeroedMatrix(), MaterialPropertyLib::density, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MaterialPropertyLib::formEigenTensor(), MeshLib::Element::getID(), NumLib::getIndices(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), getName(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::has_gravity, MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::longitudinal_dispersivity, ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::permeability, MaterialPropertyLib::Medium::phase(), MaterialPropertyLib::pore_diffusion, MaterialPropertyLib::VariableArray::porosity, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::pressure_index, ProcessLib::ComponentTransport::ComponentTransportProcessData::projected_specific_body_force_vectors, ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, ProcessLib::ComponentTransport::ComponentTransportProcessData::stabilizer, MathLib::toVector(), MaterialPropertyLib::transversal_dispersivity, and MaterialPropertyLib::viscosity.

◆ getLocalTemperature()

template<typename ShapeFunction , int GlobalDim>
NodalVectorType ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getLocalTemperature ( double const t,
Eigen::VectorXd const & local_x )
inlineprivate

◆ getShapeMatrix()

template<typename ShapeFunction , int GlobalDim>
Eigen::Map< const Eigen::RowVectorXd > ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getShapeMatrix ( const unsigned integration_point) const
inlineoverridevirtual

Provides the shape matrix at the given integration point.

Implements NumLib::ExtrapolatableElement.

Definition at line 1765 of file ComponentTransportFEM.h.

1767 {
1769 typename ShapeFunction::MeshElement>()[integration_point];
1770
1771 // assumes N is stored contiguously in memory
1772 return Eigen::Map<const Eigen::RowVectorXd>(N.data(), N.size());
1773 }

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, NumLib::ShapeMatrixCache::NsHigherOrder(), and ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache.

◆ getThermalConductivityDispersivity()

template<typename ShapeFunction , int GlobalDim>
GlobalDimMatrixType ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getThermalConductivityDispersivity ( MaterialPropertyLib::VariableArray const & vars,
const double fluid_density,
const double specific_heat_capacity_fluid,
const GlobalDimVectorType & velocity,
ParameterLib::SpatialPosition const & pos,
double const t,
double const dt )
inlineprivate

Definition at line 2049 of file ComponentTransportFEM.h.

2055 {
2056 auto const& medium =
2058
2061 medium
2062 .property(
2064 .value(vars, pos, t, dt));
2065
2066 auto const thermal_dispersivity_transversal =
2067 medium
2069 thermal_transversal_dispersivity)
2070 .template value<double>();
2071
2072 auto const thermal_dispersivity_longitudinal =
2073 medium
2075 thermal_longitudinal_dispersivity)
2076 .template value<double>();
2077
2078 // Thermal conductivity is moved outside and zero matrix is passed
2079 // instead due to multiplication with fluid's density times specific
2080 // heat capacity.
2081 return thermal_conductivity +
2082 fluid_density * specific_heat_capacity_fluid *
2085 GlobalDimMatrixType::Zero(GlobalDim, GlobalDim),
2086 velocity, 0 /* phi */, thermal_dispersivity_transversal,
2087 thermal_dispersivity_longitudinal);
2088 }

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::formEigenTensor(), MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, ProcessLib::ComponentTransport::ComponentTransportProcessData::stabilizer, and MaterialPropertyLib::thermal_conductivity.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation().

◆ initializeChemicalSystemConcrete()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::initializeChemicalSystemConcrete ( Eigen::VectorXd const & local_x,
double const t )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 313 of file ComponentTransportFEM.h.

315 {
317
318 auto const& medium =
320
323
324 auto const& Ns =
326 .NsHigherOrder<typename ShapeFunction::MeshElement>();
327
328 unsigned const n_integration_points =
330
331 for (unsigned ip = 0; ip < n_integration_points; ip++)
332 {
333 auto& ip_data = _ip_data[ip];
334 auto const& N = Ns[ip];
335 auto const& chemical_system_id = ip_data.chemical_system_id;
336
337 // set position with N as the shape matrix at the current
338 // integration point
340 NumLib::interpolateCoordinates<ShapeFunction,
342 N)));
343
344 auto const n_component = _transport_process_variables.size();
345 std::vector<double> C_int_pt(n_component);
346 for (unsigned component_id = 0; component_id < n_component;
347 ++component_id)
348 {
349 auto const concentration_index =
351 component_id * concentration_size;
352 auto const local_C =
353 local_x.template segment<concentration_size>(
354 concentration_index);
355
357 C_int_pt[component_id]);
358 }
359
361 ->initializeChemicalSystemConcrete(C_int_pt, chemical_system_id,
362 medium, pos, t);
363 }
364 }
virtual void initializeChemicalSystemConcrete(std::vector< double > const &, GlobalIndexType const &, MaterialPropertyLib::Medium const &, ParameterLib::SpatialPosition const &, double const)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_transport_process_variables, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemical_solver_interface, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ChemistryLib::ChemicalSolverInterface::initializeChemicalSystemConcrete(), NumLib::interpolateCoordinates(), ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), ParameterLib::SpatialPosition::setCoordinates(), ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, and NumLib::detail::shapeFunctionInterpolate().

◆ postSpeciationCalculation()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::postSpeciationCalculation ( std::size_t const ele_id,
double const t,
double const dt )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 431 of file ComponentTransportFEM.h.

433 {
435 {
436 return;
437 }
438
439 auto const& medium = *_process_data.media_map.getMedium(ele_id);
440
442 pos.setElementID(ele_id);
443
444 for (auto& ip_data : _ip_data)
445 {
446 ip_data.porosity = ip_data.porosity_prev;
447
449 ->updateVolumeFractionPostReaction(ip_data.chemical_system_id,
450 medium, pos,
451 ip_data.porosity, t, dt);
452
454 ip_data.chemical_system_id, medium, ip_data.porosity);
455 }
456 }
virtual void updateVolumeFractionPostReaction(GlobalIndexType const &, MaterialPropertyLib::Medium const &, ParameterLib::SpatialPosition const &, double const, double const, double const)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemical_solver_interface, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemically_induced_porosity_change, MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, ParameterLib::SpatialPosition::setElementID(), ChemistryLib::ChemicalSolverInterface::updatePorosityPostReaction(), and ChemistryLib::ChemicalSolverInterface::updateVolumeFractionPostReaction().

◆ postTimestepConcrete()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::postTimestepConcrete ( Eigen::VectorXd const & ,
Eigen::VectorXd const & ,
double const ,
double const ,
int const  )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 2001 of file ComponentTransportFEM.h.

2005 {
2006 unsigned const n_integration_points =
2008
2009 for (unsigned ip = 0; ip < n_integration_points; ip++)
2010 {
2011 _ip_data[ip].pushBackState();
2012 }
2013 }

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, and NumLib::GenericIntegrationMethod::getNumberOfPoints().

◆ setChemicalSystemConcrete()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemConcrete ( Eigen::VectorXd const & local_x,
double const t,
double dt )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 366 of file ComponentTransportFEM.h.

368 {
370
371 auto const& medium =
373
376
379
380 auto const& Ns =
382 .NsHigherOrder<typename ShapeFunction::MeshElement>();
383
384 unsigned const n_integration_points =
386
387 for (unsigned ip = 0; ip < n_integration_points; ip++)
388 {
389 auto& ip_data = _ip_data[ip];
390 auto const& N = Ns[ip];
391 auto& porosity = ip_data.porosity;
392 auto const& porosity_prev = ip_data.porosity_prev;
393 auto const& chemical_system_id = ip_data.chemical_system_id;
394
395 auto const n_component = _transport_process_variables.size();
396 std::vector<double> C_int_pt(n_component);
397 for (unsigned component_id = 0; component_id < n_component;
398 ++component_id)
399 {
400 auto const concentration_index =
402 component_id * concentration_size;
403 auto const local_C =
404 local_x.template segment<concentration_size>(
405 concentration_index);
406
408 C_int_pt[component_id]);
409 }
410
411 {
412 vars_prev.porosity = porosity_prev;
413
414 porosity =
416 ? porosity_prev
417 : medium
418 ->property(
420 .template value<double>(vars, vars_prev, pos, t,
421 dt);
422
423 vars.porosity = porosity;
424 }
425
427 C_int_pt, chemical_system_id, medium, vars, pos, t, dt);
428 }
429 }
virtual void setChemicalSystemConcrete(std::vector< double > const &, GlobalIndexType const &, MaterialPropertyLib::Medium const *, MaterialPropertyLib::VariableArray const &, ParameterLib::SpatialPosition const &, double const, double const)

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_transport_process_variables, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemical_solver_interface, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemically_induced_porosity_change, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::first_concentration_index, MeshLib::Element::getID(), MaterialPropertyLib::MaterialSpatialDistributionMap::getMedium(), NumLib::GenericIntegrationMethod::getNumberOfPoints(), ProcessLib::ComponentTransport::ComponentTransportProcessData::media_map, NumLib::ShapeMatrixCache::NsHigherOrder(), MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, ChemistryLib::ChemicalSolverInterface::setChemicalSystemConcrete(), ParameterLib::SpatialPosition::setElementID(), ProcessLib::ComponentTransport::ComponentTransportProcessData::shape_matrix_cache, and NumLib::detail::shapeFunctionInterpolate().

◆ setChemicalSystemID()

template<typename ShapeFunction , int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemID ( std::size_t const )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 293 of file ComponentTransportFEM.h.

294 {
296 // chemical system index map
297 auto& chemical_system_index_map =
299
300 unsigned const n_integration_points =
302 for (unsigned ip = 0; ip < n_integration_points; ip++)
303 {
304 _ip_data[ip].chemical_system_id =
305 chemical_system_index_map.empty()
306 ? 0
307 : chemical_system_index_map.back() + 1;
308 chemical_system_index_map.push_back(
309 _ip_data[ip].chemical_system_id);
310 }
311 }
std::vector< GlobalIndexType > chemical_system_index_map

References ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data, ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data, ProcessLib::ComponentTransport::ComponentTransportProcessData::chemical_solver_interface, ChemistryLib::ChemicalSolverInterface::chemical_system_index_map, and NumLib::GenericIntegrationMethod::getNumberOfPoints().

Member Data Documentation

◆ _element

template<typename ShapeFunction , int GlobalDim>
MeshLib::Element const& ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_element
private

Definition at line 2016 of file ComponentTransportFEM.h.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalAssemblerData(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assemble(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleBlockMatrices(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleKCmCn(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleReactionEquationConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::calculateIntPtDarcyVelocity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeSecondaryVariableConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getFlux(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtDarcyVelocity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtMolarFlux(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getLocalTemperature(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getThermalConductivityDispersivity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::initializeChemicalSystemConcrete(), and ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemConcrete().

◆ _integration_method

template<typename ShapeFunction , int GlobalDim>
NumLib::GenericIntegrationMethod const& ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_integration_method
private

Definition at line 2019 of file ComponentTransportFEM.h.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalAssemblerData(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleBlockMatrices(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleKCmCn(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleReactionEquationConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::calculateIntPtDarcyVelocity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeReactionRelatedSecondaryVariable(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeSecondaryVariableConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtMolarFlux(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::initializeChemicalSystemConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::postTimestepConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemConcrete(), and ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemID().

◆ _ip_data

template<typename ShapeFunction , int GlobalDim>
std::vector<IntegrationPointData<GlobalDimNodalMatrixType> > ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_ip_data
private

Definition at line 2023 of file ComponentTransportFEM.h.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalAssemblerData(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleBlockMatrices(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleKCmCn(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleReactionEquationConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::calculateIntPtDarcyVelocity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeReactionRelatedSecondaryVariable(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtMolarFlux(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::initializeChemicalSystemConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::postSpeciationCalculation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::postTimestepConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemConcrete(), and ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemID().

◆ _process_data

template<typename ShapeFunction , int GlobalDim>
ComponentTransportProcessData const& ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::_process_data
private

Definition at line 2017 of file ComponentTransportFEM.h.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalAssemblerData(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assemble(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleBlockMatrices(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleForStaggeredScheme(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleKCmCn(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleReactionEquationConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianForStaggeredScheme(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::calculateIntPtDarcyVelocity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeReactionRelatedSecondaryVariable(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeSecondaryVariableConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getFlux(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getHeatEnergyCoefficient(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtMolarFlux(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getLocalTemperature(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getShapeMatrix(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getThermalConductivityDispersivity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::initializeChemicalSystemConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::postSpeciationCalculation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemConcrete(), and ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemID().

◆ _transport_process_variables

◆ concentration_size

template<typename ShapeFunction , int GlobalDim>
const int ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::concentration_size
staticprivate
Initial value:
=
ShapeFunction::NPOINTS

Definition at line 216 of file ComponentTransportFEM.h.

Referenced by ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assemble(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleBlockMatrices(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleReactionEquationConcrete(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianComponentTransportEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianHydraulicEquation(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getFlux(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtDarcyVelocity(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtMolarFlux(), ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::initializeChemicalSystemConcrete(), and ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemConcrete().

◆ first_concentration_index

◆ pressure_index

◆ pressure_size

◆ temperature_index

◆ temperature_size


The documentation for this class was generated from the following file: