OGS
ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim > Class Template Reference

Detailed Description

template<typename ShapeFunction, int GlobalDim>
class ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >

Definition at line 58 of file LiquidFlowLocalAssembler.h.

#include <LiquidFlowLocalAssembler.h>

Inheritance diagram for ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >:
[legend]
Collaboration diagram for ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >:
[legend]

Classes

struct  AnisotropicCalculator
struct  IsotropicCalculator

Public Member Functions

 LiquidFlowLocalAssembler (MeshLib::Element const &element, std::size_t const, NumLib::GenericIntegrationMethod const &integration_method, bool const is_axially_symmetric, LiquidFlowData const &process_data)
void assemble (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
Eigen::Vector3d getFlux (MathLib::Point3d const &p_local_coords, double const t, std::vector< double > const &local_x) const override
Eigen::Map< const Eigen::RowVectorXd > getShapeMatrix (const unsigned integration_point) const override
 Provides the shape matrix at the given integration point.
std::vector< double > const & getIntPtDarcyVelocity (const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &velocity_cache) const override
Public Member Functions inherited from ProcessLib::LocalAssemblerInterface
virtual ~LocalAssemblerInterface ()=default
virtual void setInitialConditions (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, int const process_id)
virtual void initialize (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
virtual void preAssemble (double const, double const, std::vector< double > const &)
virtual void assembleForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
virtual void assembleWithJacobian (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
virtual void assembleWithJacobianForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
virtual void computeSecondaryVariable (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
virtual void preTimestep (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table, GlobalVector const &x, double const t, double const delta_t)
virtual void postTimestep (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
void postNonLinearSolver (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
virtual Eigen::Vector3d getFlux (MathLib::Point3d const &, double const, std::vector< std::vector< double > > const &) const
 Fits to staggered scheme.
virtual int getNumberOfVectorElementsForDeformation () const
Public Member Functions inherited from NumLib::ExtrapolatableElement
virtual ~ExtrapolatableElement ()=default

Private Types

using ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
using ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
using LocalAssemblerTraits
using NodalMatrixType = typename LocalAssemblerTraits::LocalMatrix
using NodalVectorType = typename LocalAssemblerTraits::LocalVector
using NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
using GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
using GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType
using GlobalDimNodalMatrixType

Private Member Functions

template<typename LaplacianGravityVelocityCalculator>
void assembleMatrixAndVector (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
template<typename LaplacianGravityVelocityCalculator, typename VelocityCacheType>
void computeProjectedDarcyVelocity (const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const
template<typename VelocityCacheType>
void computeDarcyVelocity (bool const is_scalar_permeability, const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const

Private Attributes

MeshLib::Element const & _element
NumLib::GenericIntegrationMethod const & _integration_method
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data
const LiquidFlowData_process_data

Member Typedef Documentation

◆ GlobalDimMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType
private

Definition at line 70 of file LiquidFlowLocalAssembler.h.

◆ GlobalDimNodalMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::GlobalDimNodalMatrixType
private
Initial value:
MatrixType< GlobalDim, ShapeFunction::NPOINTS > GlobalDimNodalMatrixType

Definition at line 71 of file LiquidFlowLocalAssembler.h.

◆ GlobalDimVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
private

Definition at line 69 of file LiquidFlowLocalAssembler.h.

◆ LocalAssemblerTraits

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::LocalAssemblerTraits
private
Initial value:
ShapeMatricesType, ShapeFunction::NPOINTS, NUM_NODAL_DOF, GlobalDim>
ShapeMatrixPolicyType< ShapeFunction, GlobalDim > ShapeMatricesType
detail::LocalAssemblerTraitsFixed< ShpPol, NNodes, NodalDOF, Dim > LocalAssemblerTraits

Definition at line 63 of file LiquidFlowLocalAssembler.h.

◆ NodalMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::NodalMatrixType = typename LocalAssemblerTraits::LocalMatrix
private

Definition at line 66 of file LiquidFlowLocalAssembler.h.

◆ NodalRowVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
private

Definition at line 68 of file LiquidFlowLocalAssembler.h.

◆ NodalVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::NodalVectorType = typename LocalAssemblerTraits::LocalVector
private

Definition at line 67 of file LiquidFlowLocalAssembler.h.

◆ ShapeMatrices

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
private

Definition at line 61 of file LiquidFlowLocalAssembler.h.

◆ ShapeMatricesType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
private

Definition at line 60 of file LiquidFlowLocalAssembler.h.

Constructor & Destructor Documentation

◆ LiquidFlowLocalAssembler()

template<typename ShapeFunction, int GlobalDim>
ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::LiquidFlowLocalAssembler ( MeshLib::Element const & element,
std::size_t const ,
NumLib::GenericIntegrationMethod const & integration_method,
bool const is_axially_symmetric,
LiquidFlowData const & process_data )
inline

Definition at line 75 of file LiquidFlowLocalAssembler.h.

84 {
85 unsigned const n_integration_points =
86 _integration_method.getNumberOfPoints();
88
89 auto const& shape_matrices =
93
95 pos.setElementID(_element.getID());
96
97 double const aperture_size =
98 (_element.getDimension() == 3u)
99 ? 1.0
100 : _process_data.aperture_size(0.0, pos)[0];
101
102 for (unsigned ip = 0; ip < n_integration_points; ip++)
103 {
104 _ip_data.emplace_back(
106 _integration_method.getWeightedPoint(ip).getWeight() *
107 shape_matrices[ip].integralMeasure *
109 }
110 }
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data
ShapeMatrixPolicyType< ShapeFunction, GlobalDim > ShapeMatricesType
NumLib::GenericIntegrationMethod const & _integration_method

References _element, _integration_method, _ip_data, _process_data, NumLib::initShapeMatrices(), and ParameterLib::SpatialPosition::setElementID().

Member Function Documentation

◆ assemble()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::assemble ( double const t,
double const dt,
std::vector< double > const & local_x,
std::vector< double > const & ,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
overridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 18 of file LiquidFlowLocalAssembler-impl.h.

23{
24 // Dummy integration point
25 unsigned const ip = 0;
26 // auto const& ip_data = _ip_data[ip];
27 auto const& Ns = _process_data.shape_matrix_cache
28 .NsHigherOrder<typename ShapeFunction::MeshElement>();
29 auto const& N = Ns[ip];
30
32 std::nullopt, _element.getID(),
35 _element, N))};
36
37 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
39 vars.temperature =
41 .template value<double>(vars, pos, t, dt);
42 vars.liquid_phase_pressure = std::numeric_limits<double>::quiet_NaN();
46 vars, pos, t, dt));
47 // Note: For Inclined 1D in 2D/3D or 2D element in 3D, the first item in
48 // the assert must be changed to permeability.rows() ==
49 // _element->getDimension()
50 assert(permeability.rows() == GlobalDim || permeability.rows() == 1);
51
52 if (permeability.size() == 1)
53 { // isotropic or 1D problem.
56 }
57 else
58 {
61 }
62}
void assembleMatrixAndVector(double const t, double const dt, std::vector< double > const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
typename ShapeMatricesType::GlobalDimMatrixType GlobalDimMatrixType
constexpr Eigen::Matrix< double, GlobalDim, GlobalDim > formEigenTensor(MaterialPropertyLib::PropertyDataType const &values)

References _element, _process_data, assembleMatrixAndVector(), MaterialPropertyLib::formEigenTensor(), NumLib::interpolateCoordinates(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::reference_temperature, and MaterialPropertyLib::VariableArray::temperature.

◆ assembleMatrixAndVector()

template<typename ShapeFunction, int GlobalDim>
template<typename LaplacianGravityVelocityCalculator>
void ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::assembleMatrixAndVector ( double const t,
double const dt,
std::vector< double > const & local_x,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
private

Definition at line 112 of file LiquidFlowLocalAssembler-impl.h.

118{
119 auto const local_matrix_size = local_x.size();
121
128 const auto local_p_vec =
130
131 unsigned const n_integration_points =
132 _integration_method.getNumberOfPoints();
133
135 pos.setElementID(_element.getID());
136
137 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
138 auto const& fluid_phase = fluidPhase(medium);
139
141 auto& phase_pressure = medium.hasPhase("Gas") ? vars.gas_phase_pressure
142 : vars.liquid_phase_pressure;
143
145 _process_data.element_rotation_matrices[_element.getID()] *
146 _process_data.element_rotation_matrices[_element.getID()].transpose() *
147 _process_data.specific_body_force;
148
149 auto const& Ns = _process_data.shape_matrix_cache
150 .NsHigherOrder<typename ShapeFunction::MeshElement>();
151
152 for (unsigned ip = 0; ip < n_integration_points; ip++)
153 {
154 auto const& ip_data = _ip_data[ip];
155 auto const& N = Ns[ip];
156
159 std::nullopt, _element.getID(),
162 _element, N))};
163
164 vars.temperature =
166 .template value<double>(vars, pos, t, dt);
167
168 auto const [fluid_density, viscosity] =
171
172 auto const porosity =
174 .template value<double>(vars, pos, t, dt);
175 auto const specific_storage =
177 .template value<double>(vars, pos, t, dt);
178
179 auto const get_drho_dp = [&]()
180 {
182 .template dValue<double>(vars, _process_data.phase_variable,
183 pos, t, dt);
184 };
185 auto const storage =
186 _process_data.equation_balance_type == EquationBalanceType::volume
189
190 double const scaling_factor =
191 _process_data.equation_balance_type == EquationBalanceType::volume
192 ? 1.0
194 // Assemble mass matrix, M
195 local_M.noalias() += scaling_factor * storage * N.transpose() * N *
196 ip_data.integration_weight;
197
201 vars, pos, t, dt));
202
203 // Assemble Laplacian, K, and RHS by the gravitational term
207 _process_data.has_gravity);
208 }
209}
typename ShapeMatricesType::GlobalDimVectorType GlobalDimVectorType
std::tuple< double, double > getFluidDensityAndViscosity(double const t, double const dt, ParameterLib::SpatialPosition const &pos, MaterialPropertyLib::Phase const &fluid_phase, MaterialPropertyLib::VariableArray &vars)
It computes fluid density and viscosity for single phase flow model.
Eigen::Map< Vector > createZeroedVector(std::vector< double > &data, Eigen::VectorXd::Index size)
Eigen::Map< const Vector > toVector(std::vector< double > const &data, Eigen::VectorXd::Index size)
Creates an Eigen mapped vector from the given data vector.
Eigen::Map< Matrix > createZeroedMatrix(std::vector< double > &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)

References _element, _integration_method, _ip_data, _process_data, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), MaterialPropertyLib::density, MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::gas_phase_pressure, MaterialPropertyLib::getFluidDensityAndViscosity(), NumLib::interpolateCoordinates(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::porosity, MaterialPropertyLib::reference_temperature, ParameterLib::SpatialPosition::setElementID(), MaterialPropertyLib::storage, MaterialPropertyLib::VariableArray::temperature, MathLib::toVector(), and ProcessLib::LiquidFlow::volume.

Referenced by assemble().

◆ computeDarcyVelocity()

template<typename ShapeFunction, int GlobalDim>
template<typename VelocityCacheType>
void ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::computeDarcyVelocity ( bool const is_scalar_permeability,
const double t,
const double dt,
std::vector< double > const & local_x,
ParameterLib::SpatialPosition const & pos,
VelocityCacheType & darcy_velocity_at_ips ) const
private

Definition at line 213 of file LiquidFlowLocalAssembler-impl.h.

218{
220 { // isotropic or 1D problem.
223 }
224 else
225 {
228 }
229}
void computeProjectedDarcyVelocity(const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const

References computeProjectedDarcyVelocity().

Referenced by getIntPtDarcyVelocity().

◆ computeProjectedDarcyVelocity()

template<typename ShapeFunction, int GlobalDim>
template<typename LaplacianGravityVelocityCalculator, typename VelocityCacheType>
void ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::computeProjectedDarcyVelocity ( const double t,
const double dt,
std::vector< double > const & local_x,
ParameterLib::SpatialPosition const & pos,
VelocityCacheType & darcy_velocity_at_ips ) const
private

Definition at line 292 of file LiquidFlowLocalAssembler-impl.h.

297{
298 auto const local_matrix_size = local_x.size();
300
301 const auto local_p_vec =
303
304 unsigned const n_integration_points =
305 _integration_method.getNumberOfPoints();
306
307 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
308 auto const& fluid_phase = fluidPhase(medium);
309
311 auto& phase_pressure = medium.hasPhase("Gas") ? vars.gas_phase_pressure
312 : vars.liquid_phase_pressure;
313
315 _process_data.element_rotation_matrices[_element.getID()] *
316 _process_data.element_rotation_matrices[_element.getID()].transpose() *
317 _process_data.specific_body_force;
318
319 auto const& Ns = _process_data.shape_matrix_cache
320 .NsHigherOrder<typename ShapeFunction::MeshElement>();
321
322 for (unsigned ip = 0; ip < n_integration_points; ip++)
323 {
324 auto const& ip_data = _ip_data[ip];
325 auto const& N = Ns[ip];
326
329 std::nullopt, _element.getID(),
332 _element, N))};
333
334 vars.temperature =
336 .template value<double>(vars, pos, t, dt);
337 auto const [fluid_density, viscosity] =
340
344 vars, pos, t, dt));
345
350 }
351}

References _element, _integration_method, _ip_data, _process_data, MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::gas_phase_pressure, MaterialPropertyLib::getFluidDensityAndViscosity(), NumLib::interpolateCoordinates(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::reference_temperature, MaterialPropertyLib::VariableArray::temperature, and MathLib::toVector().

Referenced by computeDarcyVelocity().

◆ getFlux()

template<typename ShapeFunction, int GlobalDim>
Eigen::Vector3d ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::getFlux ( MathLib::Point3d const & p_local_coords,
double const t,
std::vector< double > const & local_x ) const
overridevirtual

Computes the flux in the point p_local_coords that is given in local coordinates using the values from local_x.

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 65 of file LiquidFlowLocalAssembler-impl.h.

68{
69 // TODO (tf) Temporary value not used by current material models. Need
70 // extension of getFlux interface
72
73 // Note: Axial symmetry is set to false here, because we only need dNdx
74 // here, which is not affected by axial symmetry.
75 auto const shape_matrices =
78 false /*is_axially_symmetric*/,
80
81 // create pos object to access the correct media property
83 pos.setElementID(_element.getID());
84
85 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
86 auto const& fluid_phase = fluidPhase(medium);
87
89
90 double pressure = 0.0;
92 vars.liquid_phase_pressure = pressure;
93
97 vars, pos, t, dt));
98 auto const viscosity =
100 .template value<double>(vars, pos, t, dt);
101
102 Eigen::Vector3d flux(0.0, 0.0, 0.0);
103 flux.head<GlobalDim>() =
106
107 return flux;
108}
void shapeFunctionInterpolate(const NodalValues &, const ShapeMatrix &)

References _element, _process_data, NumLib::computeShapeMatrices(), MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), and MaterialPropertyLib::viscosity.

◆ getIntPtDarcyVelocity()

template<typename ShapeFunction, int GlobalDim>
std::vector< double > const & ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::getIntPtDarcyVelocity ( const double t,
std::vector< GlobalVector * > const & x,
std::vector< NumLib::LocalToGlobalIndexMap const * > const & dof_table,
std::vector< double > & velocity_cache ) const
overridevirtual

Implements ProcessLib::LiquidFlow::LiquidFlowLocalAssemblerInterface.

Definition at line 233 of file LiquidFlowLocalAssembler-impl.h.

238{
239 // TODO (tf) Temporary value not used by current material models. Need
240 // extension of secondary variable interface.
242
243 constexpr int process_id = 0;
244 auto const indices =
246 auto const local_x = x[process_id]->get(indices);
247 auto const n_integration_points = _integration_method.getNumberOfPoints();
248 velocity_cache.clear();
249
250 // Dummy integration point
251 unsigned const ip = 0;
252 // auto const& ip_data = _ip_data[ip];
253 auto const& Ns = _process_data.shape_matrix_cache
254 .NsHigherOrder<typename ShapeFunction::MeshElement>();
255 auto const& N = Ns[ip];
256
258 std::nullopt, _element.getID(),
261 _element, N))};
262
263 auto const& medium = *_process_data.media_map.getMedium(_element.getID());
265 vars.temperature =
267 .template value<double>(vars, pos, t, dt);
268 vars.liquid_phase_pressure = std::numeric_limits<double>::quiet_NaN();
269
273 vars, pos, t, dt));
274
275 assert(permeability.rows() == GlobalDim || permeability.rows() == 1);
276
277 bool const is_scalar_permeability = (permeability.size() == 1);
278
282
285
286 return velocity_cache;
287}
void computeDarcyVelocity(bool const is_scalar_permeability, const double t, const double dt, std::vector< double > const &local_x, ParameterLib::SpatialPosition const &pos, VelocityCacheType &darcy_velocity_at_ips) const
std::vector< GlobalIndexType > getIndices(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)

References _element, _integration_method, _process_data, computeDarcyVelocity(), MathLib::createZeroedMatrix(), MaterialPropertyLib::formEigenTensor(), NumLib::getIndices(), NumLib::interpolateCoordinates(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::reference_temperature, and MaterialPropertyLib::VariableArray::temperature.

◆ getShapeMatrix()

template<typename ShapeFunction, int GlobalDim>
Eigen::Map< const Eigen::RowVectorXd > ProcessLib::LiquidFlow::LiquidFlowLocalAssembler< ShapeFunction, GlobalDim >::getShapeMatrix ( const unsigned integration_point) const
inlineoverridevirtual

Provides the shape matrix at the given integration point.

Implements NumLib::ExtrapolatableElement.

Definition at line 125 of file LiquidFlowLocalAssembler.h.

127 {
128 auto const& N =
129 _process_data.shape_matrix_cache
130 .NsHigherOrder<typename ShapeFunction::MeshElement>();
131
132 // assumes N is stored contiguously in memory
135 }

References _process_data.

Member Data Documentation

◆ _element

◆ _integration_method

◆ _ip_data

◆ _process_data


The documentation for this class was generated from the following files: