OGS
ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim > Class Template Reference

Detailed Description

template<typename ShapeFunction, int GlobalDim>
class ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >

Definition at line 27 of file HTFEM.h.

#include <HTFEM.h>

Inheritance diagram for ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >:
[legend]
Collaboration diagram for ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >:
[legend]

Public Member Functions

 HTFEM (MeshLib::Element const &element, std::size_t const local_matrix_size, NumLib::GenericIntegrationMethod const &integration_method, bool const is_axially_symmetric, HTProcessData const &process_data, const unsigned dof_per_node)
Eigen::Map< const Eigen::RowVectorXd > getShapeMatrix (const unsigned integration_point) const override
 Provides the shape matrix at the given integration point.
Eigen::Vector3d getFlux (MathLib::Point3d const &pnt_local_coords, double const t, std::vector< double > const &local_x) const override
Public Member Functions inherited from ProcessLib::HT::HTLocalAssemblerInterface
 HTLocalAssemblerInterface ()=default
virtual std::vector< double > const & getIntPtDarcyVelocity (const double, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &, std::vector< double > &) const =0
Public Member Functions inherited from ProcessLib::LocalAssemblerInterface
virtual ~LocalAssemblerInterface ()=default
virtual void setInitialConditions (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, int const process_id)
virtual void initialize (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
virtual void preAssemble (double const, double const, std::vector< double > const &)
virtual void assemble (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
virtual void assembleForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
virtual void assembleWithJacobian (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
virtual void assembleWithJacobianForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
virtual void computeSecondaryVariable (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
virtual void preTimestep (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table, GlobalVector const &x, double const t, double const delta_t)
virtual void postTimestep (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
void postNonLinearSolver (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
virtual Eigen::Vector3d getFlux (MathLib::Point3d const &, double const, std::vector< std::vector< double > > const &) const
 Fits to staggered scheme.
virtual int getNumberOfVectorElementsForDeformation () const
Public Member Functions inherited from NumLib::ExtrapolatableElement
virtual ~ExtrapolatableElement ()=default

Protected Member Functions

double getHeatEnergyCoefficient (MaterialPropertyLib::VariableArray const &vars, const double porosity, const double fluid_density, const double specific_heat_capacity_fluid, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
GlobalDimMatrixType getThermalConductivityDispersivity (MaterialPropertyLib::VariableArray const &vars, const double fluid_density, const double specific_heat_capacity_fluid, const GlobalDimVectorType &velocity, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
std::vector< double > const & getIntPtDarcyVelocityLocal (const double t, std::vector< double > const &local_x, std::vector< double > &cache) const

Protected Attributes

MeshLib::Element const & _element
HTProcessData const & _process_data
NumLib::GenericIntegrationMethod const & _integration_method
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data

Static Protected Attributes

static const int pressure_index = ShapeFunction::NPOINTS
static const int pressure_size = ShapeFunction::NPOINTS
static const int temperature_index = 0
static const int temperature_size = ShapeFunction::NPOINTS

Private Types

using ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
using ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
using NodalVectorType = typename ShapeMatricesType::NodalVectorType
using NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
using GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
using GlobalDimNodalMatrixType
using GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType

Member Typedef Documentation

◆ GlobalDimMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType
private

Definition at line 38 of file HTFEM.h.

◆ GlobalDimNodalMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::GlobalDimNodalMatrixType
private
Initial value:
MatrixType< GlobalDim, ShapeFunction::NPOINTS > GlobalDimNodalMatrixType

Definition at line 36 of file HTFEM.h.

◆ GlobalDimVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
private

Definition at line 35 of file HTFEM.h.

◆ NodalRowVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
private

Definition at line 33 of file HTFEM.h.

◆ NodalVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::NodalVectorType = typename ShapeMatricesType::NodalVectorType
private

Definition at line 32 of file HTFEM.h.

◆ ShapeMatrices

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
private

Definition at line 30 of file HTFEM.h.

◆ ShapeMatricesType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
private

Definition at line 29 of file HTFEM.h.

Constructor & Destructor Documentation

◆ HTFEM()

template<typename ShapeFunction, int GlobalDim>
ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::HTFEM ( MeshLib::Element const & element,
std::size_t const local_matrix_size,
NumLib::GenericIntegrationMethod const & integration_method,
bool const is_axially_symmetric,
HTProcessData const & process_data,
const unsigned dof_per_node )
inline

Definition at line 41 of file HTFEM.h.

51 {
52 // This assertion is valid only if all nodal d.o.f. use the same shape
53 // matrices.
57
58 unsigned const n_integration_points =
59 _integration_method.getNumberOfPoints();
61
63 pos.setElementID(_element.getID());
64
65 double const aperture_size = _process_data.aperture_size(0.0, pos)[0];
66
67 auto const shape_matrices =
71
72 for (unsigned ip = 0; ip < n_integration_points; ip++)
73 {
74 _ip_data.emplace_back(
76 _integration_method.getWeightedPoint(ip).getWeight() *
77 shape_matrices[ip].integralMeasure *
79 }
80 }
NumLib::GenericIntegrationMethod const & _integration_method
Definition HTFEM.h:164
ShapeMatrixPolicyType< ShapeFunction, GlobalDim > ShapeMatricesType
Definition HTFEM.h:29
MeshLib::Element const & _element
Definition HTFEM.h:161
HTProcessData const & _process_data
Definition HTFEM.h:162
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data
Definition HTFEM.h:165

References ProcessLib::HT::HTLocalAssemblerInterface::HTLocalAssemblerInterface(), _element, _integration_method, _ip_data, _process_data, NumLib::initShapeMatrices(), and ParameterLib::SpatialPosition::setElementID().

Referenced by ProcessLib::HT::MonolithicHTFEM< ShapeFunction, GlobalDim >::MonolithicHTFEM(), and ProcessLib::HT::StaggeredHTFEM< ShapeFunction, GlobalDim >::StaggeredHTFEM().

Member Function Documentation

◆ getFlux()

template<typename ShapeFunction, int GlobalDim>
Eigen::Vector3d ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::getFlux ( MathLib::Point3d const & pnt_local_coords,
double const t,
std::vector< double > const & local_x ) const
inlineoverridevirtual

Computes the flux in the point pnt_local_coords that is given in local coordinates using the values from local_x.

Implements ProcessLib::HT::HTLocalAssemblerInterface.

Definition at line 94 of file HTFEM.h.

97 {
98 // Eval shape matrices at given point
99 // Note: Axial symmetry is set to false here, because we only need dNdx
100 // here, which is not affected by axial symmetry.
101 auto const shape_matrices =
103 GlobalDim>(
104 _element, false /*is_axially_symmetric*/,
106
108 pos.setElementID(this->_element.getID());
109
111
112 // local_x contains the local temperature and pressure values
113 double T_int_pt = 0.0;
114 double p_int_pt = 0.0;
116 p_int_pt);
117
118 vars.temperature = T_int_pt;
119 vars.liquid_phase_pressure = p_int_pt;
120
121 auto const& medium =
122 *_process_data.media_map.getMedium(_element.getID());
123 auto const& liquid_phase = medium.phase("AqueousLiquid");
124
125 // TODO (naumov) Temporary value not used by current material models.
126 // Need extension of secondary variables interface.
128 // fetch permeability, viscosity, density
131 .value(vars, pos, t, dt));
132
133 auto const mu =
135 .template value<double>(vars, pos, t, dt);
137
142
143 if (this->_process_data.has_gravity)
144 {
145 auto const rho_w =
148 .template value<double>(vars, pos, t, dt);
149 auto const b =
150 this->_process_data.projected_specific_body_force_vectors
151 [this->_element.getID()];
152 q += K_over_mu * rho_w * b;
153 }
154
156 flux.head<GlobalDim>() = q;
157 return flux;
158 }
typename ShapeMatricesType::GlobalDimMatrixType GlobalDimMatrixType
Definition HTFEM.h:38
typename ShapeMatricesType::GlobalDimVectorType GlobalDimVectorType
Definition HTFEM.h:35
constexpr Eigen::Matrix< double, GlobalDim, GlobalDim > formEigenTensor(MaterialPropertyLib::PropertyDataType const &values)
void shapeFunctionInterpolate(const NodalValues &, const ShapeMatrix &)

References _element, _process_data, NumLib::computeShapeMatrices(), MaterialPropertyLib::density, MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), MaterialPropertyLib::VariableArray::temperature, and MaterialPropertyLib::viscosity.

◆ getHeatEnergyCoefficient()

template<typename ShapeFunction, int GlobalDim>
double ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::getHeatEnergyCoefficient ( MaterialPropertyLib::VariableArray const & vars,
const double porosity,
const double fluid_density,
const double specific_heat_capacity_fluid,
ParameterLib::SpatialPosition const & pos,
double const t,
double const dt )
inlineprotected

◆ getIntPtDarcyVelocityLocal()

template<typename ShapeFunction, int GlobalDim>
std::vector< double > const & ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::getIntPtDarcyVelocityLocal ( const double t,
std::vector< double > const & local_x,
std::vector< double > & cache ) const
inlineprotected

Definition at line 232 of file HTFEM.h.

235 {
237 local_x.data() + pressure_index,
240 local_x.data() + temperature_index,
242
243 auto const n_integration_points =
244 _integration_method.getNumberOfPoints();
245
246 cache.clear();
250
252 pos.setElementID(_element.getID());
253
255
258
259 auto const& medium =
260 *_process_data.media_map.getMedium(_element.getID());
261 auto const& liquid_phase = medium.phase("AqueousLiquid");
262
263 auto const& Ns =
264 _process_data.shape_matrix_cache
265 .NsHigherOrder<typename ShapeFunction::MeshElement>();
266
267 for (unsigned ip = 0; ip < n_integration_points; ++ip)
268 {
269 auto const& ip_data = _ip_data[ip];
270 auto const& dNdx = ip_data.dNdx;
271 auto const& N = Ns[ip];
272
273 double T_int_pt = 0.0;
274 double p_int_pt = 0.0;
277
278 vars.temperature = T_int_pt;
279 vars.liquid_phase_pressure = p_int_pt;
280
281 // TODO (naumov) Temporary value not used by current material
282 // models. Need extension of secondary variables interface.
286 .value(vars, pos, t, dt));
287
288 auto const mu =
291 .template value<double>(vars, pos, t, dt);
293
294 cache_mat.col(ip).noalias() = -K_over_mu * dNdx * p_nodal_values;
295
296 if (_process_data.has_gravity)
297 {
298 auto const rho_w =
301 .template value<double>(vars, pos, t, dt);
302 auto const b =
303 _process_data.projected_specific_body_force_vectors
304 [_element.getID()];
305 // here it is assumed that the vector b is directed 'downwards'
306 cache_mat.col(ip).noalias() += K_over_mu * rho_w * b;
307 }
308 }
309
310 return cache;
311 }
static const int temperature_index
Definition HTFEM.h:316
static const int temperature_size
Definition HTFEM.h:317
static const int pressure_size
Definition HTFEM.h:315
static const int pressure_index
Definition HTFEM.h:314

References _element, _integration_method, _ip_data, _process_data, MathLib::createZeroedMatrix(), MaterialPropertyLib::density, MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, pressure_index, pressure_size, ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), MaterialPropertyLib::VariableArray::temperature, temperature_index, temperature_size, and MaterialPropertyLib::viscosity.

Referenced by ProcessLib::HT::MonolithicHTFEM< ShapeFunction, GlobalDim >::getIntPtDarcyVelocity(), and ProcessLib::HT::StaggeredHTFEM< ShapeFunction, GlobalDim >::getIntPtDarcyVelocity().

◆ getShapeMatrix()

template<typename ShapeFunction, int GlobalDim>
Eigen::Map< const Eigen::RowVectorXd > ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::getShapeMatrix ( const unsigned integration_point) const
inlineoverridevirtual

Provides the shape matrix at the given integration point.

Implements NumLib::ExtrapolatableElement.

Definition at line 82 of file HTFEM.h.

84 {
85 auto const& N = _process_data.shape_matrix_cache.NsHigherOrder<
87
88 // assumes N is stored contiguously in memory
89 return Eigen::Map<const Eigen::RowVectorXd>(N.data(), N.size());
90 }

References _process_data.

◆ getThermalConductivityDispersivity()

template<typename ShapeFunction, int GlobalDim>
GlobalDimMatrixType ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::getThermalConductivityDispersivity ( MaterialPropertyLib::VariableArray const & vars,
const double fluid_density,
const double specific_heat_capacity_fluid,
const GlobalDimVectorType & velocity,
ParameterLib::SpatialPosition const & pos,
double const t,
double const dt )
inlineprotected

Definition at line 191 of file HTFEM.h.

197 {
198 auto const& medium =
199 *_process_data.media_map.getMedium(_element.getID());
200
203 medium
204 .property(
206 .value(vars, pos, t, dt));
207
209 medium
212 .template value<double>();
213
215 medium
218 .template value<double>();
219
220 // Thermal conductivity is moved outside and zero matrix is passed
221 // instead due to multiplication with fluid's density times specific
222 // heat capacity.
223 return thermal_conductivity +
226 _process_data.stabilizer, _element.getID(),
230 }
Eigen::MatrixXd computeHydrodynamicDispersion(NumericalStabilization const &stabilizer, std::size_t const element_id, Eigen::MatrixXd const &pore_diffusion_coefficient, Eigen::VectorXd const &velocity, double const porosity, double const solute_dispersivity_transverse, double const solute_dispersivity_longitudinal)

References _element, _process_data, NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::formEigenTensor(), and MaterialPropertyLib::thermal_conductivity.

Referenced by ProcessLib::HT::MonolithicHTFEM< ShapeFunction, GlobalDim >::assemble(), and ProcessLib::HT::StaggeredHTFEM< ShapeFunction, GlobalDim >::assembleHeatTransportEquation().

Member Data Documentation

◆ _element

◆ _integration_method

◆ _ip_data

◆ _process_data

◆ pressure_index

◆ pressure_size

template<typename ShapeFunction, int GlobalDim>
const int ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::pressure_size = ShapeFunction::NPOINTS
staticprotected

◆ temperature_index

◆ temperature_size

template<typename ShapeFunction, int GlobalDim>
const int ProcessLib::HT::HTFEM< ShapeFunction, GlobalDim >::temperature_size = ShapeFunction::NPOINTS
staticprotected

The documentation for this class was generated from the following file: