OGS
ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim > Class Template Reference

Detailed Description

template<typename ShapeFunction, int GlobalDim>
class ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >

Definition at line 205 of file ComponentTransportFEM.h.

#include <ComponentTransportFEM.h>

Inheritance diagram for ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >:
[legend]
Collaboration diagram for ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >:
[legend]

Public Member Functions

 LocalAssemblerData (MeshLib::Element const &element, std::size_t const local_matrix_size, NumLib::GenericIntegrationMethod const &integration_method, bool is_axially_symmetric, ComponentTransportProcessData const &process_data, std::vector< std::reference_wrapper< ProcessVariable > > const &transport_process_variables)
void setChemicalSystemID (std::size_t const) override
void initializeChemicalSystemConcrete (Eigen::VectorXd const &local_x, double const t) override
void setChemicalSystemConcrete (Eigen::VectorXd const &local_x, double const t, double dt) override
void postSpeciationCalculation (std::size_t const ele_id, double const t, double const dt) override
void assemble (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
void assembleBlockMatrices (GlobalDimVectorType const &b, int const component_id, double const t, double const dt, Eigen::Ref< const NodalVectorType > const &C_nodal_values, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< LocalBlockMatrixType > KCC, Eigen::Ref< LocalBlockMatrixType > MCC, Eigen::Ref< LocalBlockMatrixType > MCp, Eigen::Ref< LocalBlockMatrixType > MpC, Eigen::Ref< LocalBlockMatrixType > Kpp, Eigen::Ref< LocalBlockMatrixType > Mpp, Eigen::Ref< LocalSegmentVectorType > Bp)
void assembleKCmCn (int const component_id, double const t, double const dt, Eigen::Ref< LocalBlockMatrixType > KCmCn, double const stoichiometric_coefficient, double const kinetic_prefactor)
void assembleForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
void assembleHydraulicEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
void assembleHeatTransportEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &)
void assembleComponentTransportEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &, int const transport_process_id)
void assembleWithJacobianForStaggeredScheme (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data) override
void assembleWithJacobianHydraulicEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
void assembleWithJacobianComponentTransportEquation (double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data, int const component_id)
void assembleReactionEquationConcrete (double const t, double const dt, Eigen::VectorXd const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data, int const transport_process_id) override
std::vector< double > const & getIntPtLiquidDensity (const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const override
std::vector< double > const & calculateIntPtLiquidDensity (const double t, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< const NodalVectorType > const &C_nodal_values, Eigen::Ref< const NodalVectorType > const &T_nodal_values, std::vector< double > &cache) const
std::vector< double > const & getIntPtDarcyVelocity (const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const override
std::vector< double > const & calculateIntPtDarcyVelocity (const double t, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< const NodalVectorType > const &C_nodal_values, Eigen::Ref< const NodalVectorType > const &T_nodal_values, std::vector< double > &cache) const
Eigen::Map< const Eigen::RowVectorXd > getShapeMatrix (const unsigned integration_point) const override
 Provides the shape matrix at the given integration point.
Eigen::Vector3d getFlux (MathLib::Point3d const &pnt_local_coords, double const t, std::vector< double > const &local_x) const override
void computeSecondaryVariableConcrete (double const t, double const, Eigen::VectorXd const &local_x, Eigen::VectorXd const &) override
void computeReactionRelatedSecondaryVariable (std::size_t const ele_id) override
std::vector< double > const & getIntPtMolarFlux (const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< double > &cache, int const component_id) const override
void postTimestepConcrete (Eigen::VectorXd const &, Eigen::VectorXd const &, double const, double const, int const) override
Public Member Functions inherited from ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface
 ComponentTransportLocalAssemblerInterface ()=default
void initializeChemicalSystem (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t)
void setChemicalSystem (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, double const dt)
void assembleReactionEquation (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, double const dt, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, int const process_id)
Public Member Functions inherited from ProcessLib::LocalAssemblerInterface
virtual ~LocalAssemblerInterface ()=default
virtual void setInitialConditions (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, int const process_id)
virtual void initialize (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
virtual void preAssemble (double const, double const, std::vector< double > const &)
virtual void assembleWithJacobian (double const t, double const dt, std::vector< double > const &local_x, std::vector< double > const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
virtual void computeSecondaryVariable (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
virtual void preTimestep (std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table, GlobalVector const &x, double const t, double const delta_t)
virtual void postTimestep (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
void postNonLinearSolver (std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, double const t, double const dt, int const process_id)
virtual Eigen::Vector3d getFlux (MathLib::Point3d const &, double const, std::vector< std::vector< double > > const &) const
 Fits to staggered scheme.
virtual int getNumberOfVectorElementsForDeformation () const
Public Member Functions inherited from NumLib::ExtrapolatableElement
virtual ~ExtrapolatableElement ()=default

Private Types

using ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
using ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
using LocalBlockMatrixType
using LocalSegmentVectorType
using LocalMatrixType
using LocalVectorType = Eigen::Matrix<double, Eigen::Dynamic, 1>
using NodalVectorType = typename ShapeMatricesType::NodalVectorType
using NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
using GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
using GlobalDimNodalMatrixType
using GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType

Private Member Functions

double getHeatEnergyCoefficient (MaterialPropertyLib::VariableArray const &vars, const double porosity, const double fluid_density, const double specific_heat_capacity_fluid, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
GlobalDimMatrixType getThermalConductivityDispersivity (MaterialPropertyLib::VariableArray const &vars, const double fluid_density, const double specific_heat_capacity_fluid, const GlobalDimVectorType &velocity, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
NodalVectorType getLocalTemperature (double const t, Eigen::VectorXd const &local_x) const

Private Attributes

const int temperature_index = -1
const int first_concentration_index = -1
MeshLib::Element const & _element
ComponentTransportProcessData const & _process_data
NumLib::GenericIntegrationMethod const & _integration_method
std::vector< std::reference_wrapper< ProcessVariable > > const _transport_process_variables
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data

Static Private Attributes

static const int pressure_index = 0
static const int pressure_size = ShapeFunction::NPOINTS
static const int temperature_size = ShapeFunction::NPOINTS
static const int concentration_size

Member Typedef Documentation

◆ GlobalDimMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::GlobalDimMatrixType = typename ShapeMatricesType::GlobalDimMatrixType
private

Definition at line 237 of file ComponentTransportFEM.h.

◆ GlobalDimNodalMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::GlobalDimNodalMatrixType
private
Initial value:
MatrixType< GlobalDim, ShapeFunction::NPOINTS > GlobalDimNodalMatrixType

Definition at line 235 of file ComponentTransportFEM.h.

◆ GlobalDimVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::GlobalDimVectorType = typename ShapeMatricesType::GlobalDimVectorType
private

Definition at line 234 of file ComponentTransportFEM.h.

◆ LocalBlockMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalBlockMatrixType
private
Initial value:
typename ShapeMatricesType::template MatrixType<pressure_size,

Definition at line 221 of file ComponentTransportFEM.h.

◆ LocalMatrixType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalMatrixType
private
Initial value:
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>

Definition at line 227 of file ComponentTransportFEM.h.

◆ LocalSegmentVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalSegmentVectorType
private
Initial value:
typename ShapeMatricesType::template VectorType<pressure_size>

Definition at line 224 of file ComponentTransportFEM.h.

◆ LocalVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalVectorType = Eigen::Matrix<double, Eigen::Dynamic, 1>
private

Definition at line 229 of file ComponentTransportFEM.h.

◆ NodalRowVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::NodalRowVectorType = typename ShapeMatricesType::NodalRowVectorType
private

Definition at line 232 of file ComponentTransportFEM.h.

◆ NodalVectorType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::NodalVectorType = typename ShapeMatricesType::NodalVectorType
private

Definition at line 231 of file ComponentTransportFEM.h.

◆ ShapeMatrices

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::ShapeMatrices = typename ShapeMatricesType::ShapeMatrices
private

Definition at line 219 of file ComponentTransportFEM.h.

◆ ShapeMatricesType

template<typename ShapeFunction, int GlobalDim>
using ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, GlobalDim>
private

Definition at line 218 of file ComponentTransportFEM.h.

Constructor & Destructor Documentation

◆ LocalAssemblerData()

template<typename ShapeFunction, int GlobalDim>
ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::LocalAssemblerData ( MeshLib::Element const & element,
std::size_t const local_matrix_size,
NumLib::GenericIntegrationMethod const & integration_method,
bool is_axially_symmetric,
ComponentTransportProcessData const & process_data,
std::vector< std::reference_wrapper< ProcessVariable > > const & transport_process_variables )
inline

Definition at line 240 of file ComponentTransportFEM.h.

248 : temperature_index(process_data.isothermal ? -1
257 {
259
260 unsigned const n_integration_points =
261 _integration_method.getNumberOfPoints();
263
265 pos.setElementID(_element.getID());
266
267 double const aperture_size = _process_data.aperture_size(0.0, pos)[0];
268
269 auto const shape_matrices =
273 auto const& medium =
274 *_process_data.media_map.getMedium(_element.getID());
275 for (unsigned ip = 0; ip < n_integration_points; ip++)
276 {
277 _ip_data.emplace_back(
279 _integration_method.getWeightedPoint(ip).getWeight() *
280 shape_matrices[ip].integralMeasure *
282
283 _ip_data[ip].porosity =
285 .template initialValue<double>(
287
288 _ip_data[ip].pushBackState();
289 }
290 }
NumLib::GenericIntegrationMethod const & _integration_method
std::vector< IntegrationPointData< GlobalDimNodalMatrixType > > _ip_data
ComponentTransportProcessData const & _process_data
ShapeMatrixPolicyType< ShapeFunction, GlobalDim > ShapeMatricesType
std::vector< std::reference_wrapper< ProcessVariable > > const _transport_process_variables

References _element, _integration_method, _ip_data, _process_data, _transport_process_variables, first_concentration_index, NumLib::initShapeMatrices(), MaterialPropertyLib::porosity, ParameterLib::SpatialPosition::setElementID(), and temperature_index.

Member Function Documentation

◆ assemble()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assemble ( double const t,
double const dt,
std::vector< double > const & local_x,
std::vector< double > const & ,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 457 of file ComponentTransportFEM.h.

463 {
464 auto const local_matrix_size = local_x.size();
465 // Nodal DOFs include pressure
466 int const num_nodal_dof = 1 + _transport_process_variables.size();
467 // This assertion is valid only if all nodal d.o.f. use the same shape
468 // matrices.
470
477
478 // Get block matrices
484
487
488 auto const& b =
490 .projected_specific_body_force_vectors[_element.getID()];
491
492 auto const number_of_components = num_nodal_dof - 1;
494 ++component_id)
495 {
496 /* Partitioned assembler matrix
497 * | pp | pc1 | pc2 | pc3 |
498 * |-----|-----|-----|-----|
499 * | c1p | c1c1| 0 | 0 |
500 * |-----|-----|-----|-----|
501 * | c2p | 0 | c2c2| 0 |
502 * |-----|-----|-----|-----|
503 * | c3p | 0 | 0 | c3c3|
504 */
507
508 auto KCC =
511 auto MCC =
514 auto MCp =
517 auto MpC =
520
523
525 MCC, MCp, MpC, Kpp, Mpp, Bp);
526
527 if (_process_data.chemical_solver_interface)
528 {
529 auto const stoichiometric_matrix =
530 _process_data.chemical_solver_interface
531 ->getStoichiometricMatrix();
532
534
537 it;
538 ++it)
539 {
540 auto const stoichiometric_coefficient = it.value();
541 auto const coupled_component_id = it.row();
542 auto const kinetic_prefactor =
543 _process_data.chemical_solver_interface
544 ->getKineticPrefactor(coupled_component_id);
545
546 auto const concentration_index =
548 auto const coupled_concentration_index =
551 auto KCmCn = local_K.template block<concentration_size,
554
555 // account for the coupling between components
559 }
560 }
561 }
562 }
void assembleBlockMatrices(GlobalDimVectorType const &b, int const component_id, double const t, double const dt, Eigen::Ref< const NodalVectorType > const &C_nodal_values, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< LocalBlockMatrixType > KCC, Eigen::Ref< LocalBlockMatrixType > MCC, Eigen::Ref< LocalBlockMatrixType > MCp, Eigen::Ref< LocalBlockMatrixType > MpC, Eigen::Ref< LocalBlockMatrixType > Kpp, Eigen::Ref< LocalBlockMatrixType > Mpp, Eigen::Ref< LocalSegmentVectorType > Bp)
void assembleKCmCn(int const component_id, double const t, double const dt, Eigen::Ref< LocalBlockMatrixType > KCmCn, double const stoichiometric_coefficient, double const kinetic_prefactor)
Eigen::Map< Vector > createZeroedVector(std::vector< double > &data, Eigen::VectorXd::Index size)
Eigen::Map< Matrix > createZeroedMatrix(std::vector< double > &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)

References _element, _process_data, _transport_process_variables, assembleBlockMatrices(), assembleKCmCn(), concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), pressure_index, and pressure_size.

◆ assembleBlockMatrices()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleBlockMatrices ( GlobalDimVectorType const & b,
int const component_id,
double const t,
double const dt,
Eigen::Ref< const NodalVectorType > const & C_nodal_values,
Eigen::Ref< const NodalVectorType > const & p_nodal_values,
Eigen::Ref< LocalBlockMatrixType > KCC,
Eigen::Ref< LocalBlockMatrixType > MCC,
Eigen::Ref< LocalBlockMatrixType > MCp,
Eigen::Ref< LocalBlockMatrixType > MpC,
Eigen::Ref< LocalBlockMatrixType > Kpp,
Eigen::Ref< LocalBlockMatrixType > Mpp,
Eigen::Ref< LocalSegmentVectorType > Bp )
inline

Definition at line 564 of file ComponentTransportFEM.h.

576 {
577 unsigned const n_integration_points =
578 _integration_method.getNumberOfPoints();
579
581 pos.setElementID(_element.getID());
582
584
585 // Get material properties
586 auto const& medium =
587 *_process_data.media_map.getMedium(_element.getID());
588 // Select the only valid for component transport liquid phase.
589 auto const& phase = medium.phase("AqueousLiquid");
590
591 // Assume that the component name is the same as the process variable
592 // name. Components are shifted by one because the first one is always
593 // pressure.
594 auto const& component = phase.component(
596
599
601 double average_velocity_norm = 0.0;
602 if (!_process_data.non_advective_form)
603 {
605 }
606
607 auto const& Ns =
608 _process_data.shape_matrix_cache
609 .NsHigherOrder<typename ShapeFunction::MeshElement>();
610
611 for (unsigned ip(0); ip < n_integration_points; ++ip)
612 {
613 auto& ip_data = _ip_data[ip];
614 auto const& dNdx = ip_data.dNdx;
615 auto const& N = Ns[ip];
616 auto const& w = ip_data.integration_weight;
617 auto& porosity = ip_data.porosity;
618
619 double C_int_pt = 0.0;
620 double p_int_pt = 0.0;
621
624
625 // set position with N as the shape matrix at the current
626 // integration point
627 pos.setCoordinates(MathLib::Point3d(
630 N)));
631
632 vars.concentration = C_int_pt;
633 vars.liquid_phase_pressure = p_int_pt;
634
635 // update according to a particular porosity model
637 .template value<double>(vars, pos, t, dt);
638 vars.porosity = porosity;
639
640 auto const& retardation_factor =
642 .template value<double>(vars, pos, t, dt);
643
644 auto const& solute_dispersivity_transverse = medium.template value<
645 double>(
647
649 medium.template value<double>(
652
653 // Use the fluid density model to compute the density
654 // TODO (renchao): concentration of which component as the argument
655 // for calculation of fluid density
656 auto const density =
658 .template value<double>(vars, pos, t, dt);
659
660 auto const decay_rate =
662 .template value<double>(vars, pos, t, dt);
663
664 auto const& pore_diffusion_coefficient =
667 .value(vars, pos, t, dt));
668
671 vars, pos, t, dt));
672
673 // Use the viscosity model to compute the viscosity
675 .template value<double>(vars, pos, t, dt);
676
677 double storage = 0;
679 {
681 .template value<double>(vars, pos, t, dt);
682 }
683
686 _process_data.has_gravity
690
691 const double drho_dp =
693 .template dValue<double>(
694 vars,
696 pos, t, dt);
697
698 const double drho_dC =
700 .template dValue<double>(
702 t, dt);
703
706 _process_data.stabilizer, _element.getID(),
710
713 auto const N_t_N = (N.transpose() * N).eval();
714
715 if (_process_data.non_advective_form)
716 {
717 MCp.noalias() += N_t_N * (C_int_pt * R_times_phi * drho_dp * w);
718 MCC.noalias() += N_t_N * (C_int_pt * R_times_phi * drho_dC * w);
719 KCC.noalias() -= dNdx.transpose() * mass_density_flow * N * w;
720 }
721 else
722 {
723 ip_flux_vector.emplace_back(mass_density_flow);
725 }
726 MCC.noalias() += N_t_N * (R_times_phi * density * w);
727 KCC.noalias() += N_t_N * (decay_rate * R_times_phi * density * w);
728 KCC_Laplacian.noalias() +=
729 dNdx.transpose() * hydrodynamic_dispersion * dNdx * density * w;
730
731 MpC.noalias() += N_t_N * (porosity * drho_dC * w);
732
733 // Calculate Mpp, Kpp, and bp in the first loop over components
734 if (component_id == 0)
735 {
736 Mpp.noalias() +=
737 N_t_N * (porosity * drho_dp * w + density * storage * w);
738 Kpp.noalias() +=
739 dNdx.transpose() * K_over_mu * dNdx * (density * w);
740
741 if (_process_data.has_gravity)
742 {
743 Bp.noalias() += dNdx.transpose() * K_over_mu * b *
744 (density * density * w);
745 }
746 }
747 }
748
749 if (!_process_data.non_advective_form)
750 {
753 _process_data.stabilizer,
754 _ip_data,
755 _process_data.shape_matrix_cache,
758 static_cast<double>(n_integration_points),
760 }
761
762 KCC.noalias() += KCC_Laplacian;
763 }
std::string getName(std::string const &line)
Returns the name/title from the "Zone"-description.
typename ShapeMatricesType::GlobalDimVectorType GlobalDimVectorType
typename ShapeMatricesType::template MatrixType< pressure_size, pressure_size > LocalBlockMatrixType
typename ShapeMatricesType::GlobalDimMatrixType GlobalDimMatrixType
constexpr Eigen::Matrix< double, GlobalDim, GlobalDim > formEigenTensor(MaterialPropertyLib::PropertyDataType const &values)
void shapeFunctionInterpolate(const NodalValues &, const ShapeMatrix &)
Eigen::MatrixXd computeHydrodynamicDispersion(NumericalStabilization const &stabilizer, std::size_t const element_id, Eigen::MatrixXd const &pore_diffusion_coefficient, Eigen::VectorXd const &velocity, double const porosity, double const solute_dispersivity_transverse, double const solute_dispersivity_longitudinal)

References _element, _integration_method, _ip_data, _process_data, _transport_process_variables, NumLib::detail::assembleAdvectionMatrix(), NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::concentration, MaterialPropertyLib::VariableArray::concentration, concentration_size, MaterialPropertyLib::decay_rate, MaterialPropertyLib::density, MaterialPropertyLib::formEigenTensor(), getName(), NumLib::interpolateCoordinates(), MaterialPropertyLib::liquid_phase_pressure, MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::pore_diffusion, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, MaterialPropertyLib::retardation_factor, ParameterLib::SpatialPosition::setCoordinates(), ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), MaterialPropertyLib::storage, MaterialPropertyLib::transversal_dispersivity, and MaterialPropertyLib::viscosity.

Referenced by assemble().

◆ assembleComponentTransportEquation()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleComponentTransportEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & ,
int const transport_process_id )
inline

Definition at line 1118 of file ComponentTransportFEM.h.

1123 {
1124 assert(static_cast<int>(local_x.size()) ==
1127 static_cast<int>(_transport_process_variables.size()) +
1128 (_process_data.isothermal ? 0 : temperature_size));
1129
1130 auto const local_p =
1132
1134
1135 auto const local_C = local_x.template segment<concentration_size>(
1137 (transport_process_id - (_process_data.isothermal ? 1 : 2)) *
1139 auto const local_p_prev =
1141
1146
1149
1150 unsigned const n_integration_points =
1151 _integration_method.getNumberOfPoints();
1152
1154 double average_velocity_norm = 0.0;
1155 if (!_process_data.non_advective_form)
1156 {
1158 }
1159
1161 pos.setElementID(_element.getID());
1162
1163 auto const& b =
1165 .projected_specific_body_force_vectors[_element.getID()];
1166
1169
1170 auto const& medium =
1171 *_process_data.media_map.getMedium(_element.getID());
1172 auto const& phase = medium.phase("AqueousLiquid");
1173 auto const component_id =
1174 transport_process_id - (_process_data.isothermal ? 1 : 2);
1175 auto const& component = phase.component(
1177
1178 auto const& Ns =
1179 _process_data.shape_matrix_cache
1180 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1181
1182 for (unsigned ip(0); ip < n_integration_points; ++ip)
1183 {
1184 auto& ip_data = _ip_data[ip];
1185 auto const& dNdx = ip_data.dNdx;
1186 auto const& w = ip_data.integration_weight;
1187 auto const& N = Ns[ip];
1188 auto& porosity = ip_data.porosity;
1189 auto const& porosity_prev = ip_data.porosity_prev;
1190
1191 double const C_int_pt = N.dot(local_C);
1192 double const p_int_pt = N.dot(local_p);
1193 double const T_int_pt = N.dot(local_T);
1194
1195 vars.concentration = C_int_pt;
1196 vars.liquid_phase_pressure = p_int_pt;
1197 vars.temperature = T_int_pt;
1198
1199 if (_process_data.temperature)
1200 {
1201 vars.temperature = N.dot(local_T);
1202 }
1203
1204 // porosity
1205 {
1206 vars_prev.porosity = porosity_prev;
1207
1208 porosity =
1209 _process_data.chemically_induced_porosity_change
1212 .template value<double>(vars, vars_prev, pos, t,
1213 dt);
1214
1215 vars.porosity = porosity;
1216 }
1217
1218 auto const& retardation_factor =
1220 .template value<double>(vars, pos, t, dt);
1221
1222 auto const& solute_dispersivity_transverse = medium.template value<
1223 double>(
1226 medium.template value<double>(
1229
1230 // Use the fluid density model to compute the density
1231 auto const density =
1233 .template value<double>(vars, pos, t, dt);
1234 auto const decay_rate =
1236 .template value<double>(vars, pos, t, dt);
1237
1238 auto const& pore_diffusion_coefficient =
1241 .value(vars, pos, t, dt));
1242
1245 vars, pos, t, dt));
1246 // Use the viscosity model to compute the viscosity
1248 .template value<double>(vars, pos, t, dt);
1249
1252 _process_data.has_gravity
1254 (dNdx * local_p - density * b))
1256
1259 _process_data.stabilizer, _element.getID(),
1263
1264 double const R_times_phi = retardation_factor * porosity;
1265 auto const N_t_N = (N.transpose() * N).eval();
1266
1267 if (_process_data.non_advective_form)
1268 {
1269 const double drho_dC =
1271 .template dValue<double>(
1273 pos, t, dt);
1274 local_M.noalias() +=
1276 }
1277
1278 local_M.noalias() += N_t_N * (R_times_phi * density * w);
1279
1280 // coupling term
1281 if (_process_data.non_advective_form)
1282 {
1283 double const p_dot = (p_int_pt - N.dot(local_p_prev)) / dt;
1284
1285 const double drho_dp =
1287 .template dValue<double>(vars,
1290 pos, t, dt);
1291
1292 local_K.noalias() +=
1293 N_t_N * ((R_times_phi * drho_dp * p_dot) * w) -
1294 dNdx.transpose() * velocity * N * (density * w);
1295 }
1296 else
1297 {
1298 ip_flux_vector.emplace_back(velocity * density);
1300 }
1301 local_K.noalias() +=
1303
1304 KCC_Laplacian.noalias() += dNdx.transpose() *
1306 (density * w);
1307 }
1308
1309 if (!_process_data.non_advective_form)
1310 {
1313 _process_data.stabilizer, _ip_data,
1314 _process_data.shape_matrix_cache, ip_flux_vector,
1316 static_cast<double>(n_integration_points),
1318 }
1319 local_K.noalias() += KCC_Laplacian;
1320 }
NodalVectorType getLocalTemperature(double const t, Eigen::VectorXd const &local_x) const
typename ShapeMatricesType::NodalVectorType NodalVectorType

References _element, _integration_method, _ip_data, _process_data, _transport_process_variables, NumLib::detail::assembleAdvectionMatrix(), NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::concentration, MaterialPropertyLib::VariableArray::concentration, concentration_size, MathLib::createZeroedMatrix(), MaterialPropertyLib::decay_rate, MaterialPropertyLib::density, first_concentration_index, MaterialPropertyLib::formEigenTensor(), getLocalTemperature(), getName(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::pore_diffusion, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, pressure_index, pressure_size, MaterialPropertyLib::retardation_factor, ParameterLib::SpatialPosition::setElementID(), MaterialPropertyLib::VariableArray::temperature, temperature_size, MaterialPropertyLib::transversal_dispersivity, and MaterialPropertyLib::viscosity.

Referenced by assembleForStaggeredScheme().

◆ assembleForStaggeredScheme()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleForStaggeredScheme ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
int const process_id,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 819 of file ComponentTransportFEM.h.

826 {
827 if (process_id == _process_data.hydraulic_process_id)
828 {
831 }
832 else if (process_id == _process_data.thermal_process_id)
833 {
837 }
838 else
839 {
840 // Go for assembling in an order of transport process id.
844 }
845 }
void assembleHeatTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &)
void assembleHydraulicEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
void assembleComponentTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &, int const transport_process_id)

References _process_data, assembleComponentTransportEquation(), assembleHeatTransportEquation(), and assembleHydraulicEquation().

◆ assembleHeatTransportEquation()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHeatTransportEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & ,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > &  )
inline

Definition at line 982 of file ComponentTransportFEM.h.

988 {
989 // In the staggered HTC process, number of components might be non-zero.
990 assert(local_x.size() ==
993 static_cast<int>(_transport_process_variables.size()));
994
995 auto const local_p =
997 auto const local_T = getLocalTemperature(t, local_x);
998
1003
1005 pos.setElementID(this->_element.getID());
1006
1007 auto const& process_data = this->_process_data;
1008 auto const& medium =
1009 *process_data.media_map.getMedium(this->_element.getID());
1010 auto const& liquid_phase = medium.phase("AqueousLiquid");
1011
1012 auto const& b =
1014 .projected_specific_body_force_vectors[_element.getID()];
1015
1017
1018 unsigned const n_integration_points =
1019 this->_integration_method.getNumberOfPoints();
1020
1022 double average_velocity_norm = 0.0;
1024
1025 auto const& Ns =
1026 _process_data.shape_matrix_cache
1027 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1028
1029 for (unsigned ip(0); ip < n_integration_points; ip++)
1030 {
1031 auto const& ip_data = this->_ip_data[ip];
1032 auto const& dNdx = ip_data.dNdx;
1033 auto const& w = ip_data.integration_weight;
1034 auto const& N = Ns[ip];
1035
1037 {}, this->_element.getID(),
1041 N)));
1042
1043 double p_at_xi = 0.;
1045 double T_at_xi = 0.;
1047
1048 vars.temperature = T_at_xi;
1049 vars.liquid_phase_pressure = p_at_xi;
1050
1051 vars.liquid_saturation = 1.0;
1052
1053 auto const porosity =
1055 .template value<double>(vars, pos, t, dt);
1056 vars.porosity = porosity;
1057
1058 // Use the fluid density model to compute the density
1059 auto const fluid_density =
1062 .template value<double>(vars, pos, t, dt);
1063 vars.density = fluid_density;
1064 auto const specific_heat_capacity_fluid =
1067 .template value<double>(vars, pos, t, dt);
1068
1069 // Assemble mass matrix
1070 local_M.noalias() +=
1071 N.transpose() * N *
1074 pos, t, dt) *
1075 w);
1076
1077 // Assemble Laplace matrix
1078 auto const viscosity =
1081 .template value<double>(vars, pos, t, dt);
1082
1083 auto const intrinsic_permeability =
1085 medium
1086 .property(
1088 .value(vars, pos, t, dt));
1089
1093 process_data.has_gravity
1095 (dNdx * local_p - fluid_density * b))
1097
1101 pos, t, dt);
1102
1103 local_K.noalias() +=
1104 w * dNdx.transpose() * thermal_conductivity_dispersivity * dNdx;
1105
1106 ip_flux_vector.emplace_back(velocity * fluid_density *
1109 }
1110
1112 process_data.stabilizer, this->_ip_data,
1113 _process_data.shape_matrix_cache, ip_flux_vector,
1114 average_velocity_norm / static_cast<double>(n_integration_points),
1115 local_K);
1116 }
GlobalDimMatrixType getThermalConductivityDispersivity(MaterialPropertyLib::VariableArray const &vars, const double fluid_density, const double specific_heat_capacity_fluid, const GlobalDimVectorType &velocity, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
double getHeatEnergyCoefficient(MaterialPropertyLib::VariableArray const &vars, const double porosity, const double fluid_density, const double specific_heat_capacity_fluid, ParameterLib::SpatialPosition const &pos, double const t, double const dt)
void assembleAdvectionMatrix(IPData const &ip_data_vector, NumLib::ShapeMatrixCache const &shape_matrix_cache, std::vector< FluxVectorType > const &ip_flux_vector, Eigen::MatrixBase< Derived > &laplacian_matrix)

References _element, _integration_method, _ip_data, _process_data, _transport_process_variables, NumLib::detail::assembleAdvectionMatrix(), concentration_size, MathLib::createZeroedMatrix(), MaterialPropertyLib::density, MaterialPropertyLib::VariableArray::density, MaterialPropertyLib::formEigenTensor(), getHeatEnergyCoefficient(), getLocalTemperature(), getThermalConductivityDispersivity(), NumLib::interpolateCoordinates(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::VariableArray::liquid_saturation, MaterialPropertyLib::permeability, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, pressure_index, pressure_size, ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), MaterialPropertyLib::specific_heat_capacity, MaterialPropertyLib::VariableArray::temperature, temperature_size, and MaterialPropertyLib::viscosity.

Referenced by assembleForStaggeredScheme().

◆ assembleHydraulicEquation()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleHydraulicEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data )
inline

Definition at line 847 of file ComponentTransportFEM.h.

854 {
855 auto const local_p =
857 auto const local_C = local_x.template segment<concentration_size>(
859 auto const local_C_prev =
861
863
870
871 unsigned const n_integration_points =
872 _integration_method.getNumberOfPoints();
873
875 pos.setElementID(_element.getID());
876
877 auto const& b =
879 .projected_specific_body_force_vectors[_element.getID()];
880
881 auto const& medium =
882 *_process_data.media_map.getMedium(_element.getID());
883 auto const& phase = medium.phase("AqueousLiquid");
884
887
888 auto const& Ns =
889 _process_data.shape_matrix_cache
890 .NsHigherOrder<typename ShapeFunction::MeshElement>();
891
892 for (unsigned ip(0); ip < n_integration_points; ++ip)
893 {
894 auto& ip_data = _ip_data[ip];
895 auto const& dNdx = ip_data.dNdx;
896 auto const& w = ip_data.integration_weight;
897 auto const& N = Ns[ip];
898 auto& porosity = ip_data.porosity;
899 auto const& porosity_prev = ip_data.porosity_prev;
900
901 double const C_int_pt = N.dot(local_C);
902 double const p_int_pt = N.dot(local_p);
903 double const T_int_pt = N.dot(local_T);
904
905 vars.concentration = C_int_pt;
906 vars.liquid_phase_pressure = p_int_pt;
907 vars.temperature = T_int_pt;
908
909 // porosity
910 {
911 vars_prev.porosity = porosity_prev;
912
913 porosity =
914 _process_data.chemically_induced_porosity_change
917 .template value<double>(vars, vars_prev, pos, t,
918 dt);
919
920 vars.porosity = porosity;
921 }
922
923 // Use the fluid density model to compute the density
924 // TODO: Concentration of which component as one of arguments for
925 // calculation of fluid density
926 auto const density =
928 .template value<double>(vars, pos, t, dt);
929
930 double storage = 0;
932 {
934 .template value<double>(vars, pos, t, dt);
935 }
936
939 vars, pos, t, dt));
940
941 // Use the viscosity model to compute the viscosity
943 .template value<double>(vars, pos, t, dt);
944
946
947 const double drho_dp =
949 .template dValue<double>(
950 vars,
952 pos, t, dt);
953 const double drho_dC =
955 .template dValue<double>(
957 t, dt);
958
959 // matrix assembly
960 local_M.noalias() +=
961 N.transpose() * N *
962 (porosity * drho_dp * w + density * storage * w);
963 local_K.noalias() +=
964 w * dNdx.transpose() * density * K_over_mu * dNdx;
965
966 if (_process_data.has_gravity)
967 {
968 local_b.noalias() +=
969 w * density * density * dNdx.transpose() * K_over_mu * b;
970 }
971
972 // coupling term
973 {
974 double const C_dot = (C_int_pt - N.dot(local_C_prev)) / dt;
975
976 local_b.noalias() -=
977 N.transpose() * (porosity * drho_dC * C_dot * w);
978 }
979 }
980 }

References _element, _integration_method, _ip_data, _process_data, MaterialPropertyLib::concentration, MaterialPropertyLib::VariableArray::concentration, concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), MaterialPropertyLib::density, first_concentration_index, MaterialPropertyLib::formEigenTensor(), getLocalTemperature(), MaterialPropertyLib::liquid_phase_pressure, MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, pressure_index, pressure_size, ParameterLib::SpatialPosition::setElementID(), MaterialPropertyLib::storage, MaterialPropertyLib::VariableArray::temperature, and MaterialPropertyLib::viscosity.

Referenced by assembleForStaggeredScheme().

◆ assembleKCmCn()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleKCmCn ( int const component_id,
double const t,
double const dt,
Eigen::Ref< LocalBlockMatrixType > KCmCn,
double const stoichiometric_coefficient,
double const kinetic_prefactor )
inline

Definition at line 765 of file ComponentTransportFEM.h.

769 {
770 unsigned const n_integration_points =
771 _integration_method.getNumberOfPoints();
772
774 pos.setElementID(_element.getID());
775
777
778 auto const& medium =
779 *_process_data.media_map.getMedium(_element.getID());
780 auto const& phase = medium.phase("AqueousLiquid");
781 auto const& component = phase.component(
783
784 auto const& Ns =
785 _process_data.shape_matrix_cache
786 .NsHigherOrder<typename ShapeFunction::MeshElement>();
787
788 for (unsigned ip(0); ip < n_integration_points; ++ip)
789 {
790 auto& ip_data = _ip_data[ip];
791 auto const& w = ip_data.integration_weight;
792 auto const& N = Ns[ip];
793 auto& porosity = ip_data.porosity;
794
795 // set position with N as the shape matrix at the current
796 // integration point
797 pos.setCoordinates(MathLib::Point3d(
800 N)));
801
802 auto const retardation_factor =
804 .template value<double>(vars, pos, t, dt);
805
807 .template value<double>(vars, pos, t, dt);
808
809 auto const density =
811 .template value<double>(vars, pos, t, dt);
812
813 KCmCn.noalias() -= N.transpose() * N *
816 }
817 }

References _element, _integration_method, _ip_data, _process_data, _transport_process_variables, MaterialPropertyLib::density, getName(), NumLib::interpolateCoordinates(), MaterialPropertyLib::porosity, MaterialPropertyLib::retardation_factor, ParameterLib::SpatialPosition::setCoordinates(), and ParameterLib::SpatialPosition::setElementID().

Referenced by assemble().

◆ assembleReactionEquationConcrete()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleReactionEquationConcrete ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
std::vector< double > & local_M_data,
std::vector< double > & local_K_data,
std::vector< double > & local_b_data,
int const transport_process_id )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 1598 of file ComponentTransportFEM.h.

1603 {
1604 auto const local_C = local_x.template segment<concentration_size>(
1607
1614
1615 unsigned const n_integration_points =
1616 _integration_method.getNumberOfPoints();
1617
1619 pos.setElementID(_element.getID());
1620
1623
1624 auto const& medium =
1625 *_process_data.media_map.getMedium(_element.getID());
1626 auto const component_id = transport_process_id - 1;
1627
1628 auto const& Ns =
1629 _process_data.shape_matrix_cache
1630 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1631
1632 for (unsigned ip(0); ip < n_integration_points; ++ip)
1633 {
1634 auto& ip_data = _ip_data[ip];
1635 auto const w = ip_data.integration_weight;
1636 auto const& N = Ns[ip];
1637 auto& porosity = ip_data.porosity;
1638 auto const& porosity_prev = ip_data.porosity_prev;
1639 auto const chemical_system_id = ip_data.chemical_system_id;
1640
1641 double C_int_pt = 0.0;
1643
1644 vars.concentration = C_int_pt;
1645
1646 auto const porosity_dot = (porosity - porosity_prev) / dt;
1647
1648 // porosity
1649 {
1650 vars_prev.porosity = porosity_prev;
1651
1652 porosity =
1653 _process_data.chemically_induced_porosity_change
1656 .template value<double>(vars, vars_prev, pos, t,
1657 dt);
1658 }
1659
1660 local_M.noalias() += w * N.transpose() * porosity * N;
1661
1662 local_K.noalias() += w * N.transpose() * porosity_dot * N;
1663
1664 if (chemical_system_id == -1)
1665 {
1666 continue;
1667 }
1668
1669 auto const C_post_int_pt =
1670 _process_data.chemical_solver_interface->getConcentration(
1672
1673 local_b.noalias() += N.transpose() * ((C_post_int_pt - C_int_pt) /
1674 dt * porosity * w);
1675 }
1676 }

References _element, _integration_method, _ip_data, _process_data, MaterialPropertyLib::VariableArray::concentration, concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), first_concentration_index, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, ParameterLib::SpatialPosition::setElementID(), and NumLib::detail::shapeFunctionInterpolate().

◆ assembleWithJacobianComponentTransportEquation()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianComponentTransportEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
std::vector< double > & local_b_data,
std::vector< double > & local_Jac_data,
int const component_id )
inline

Definition at line 1450 of file ComponentTransportFEM.h.

1454 {
1455 auto const concentration_index =
1457
1458 auto const p = local_x.template segment<pressure_size>(pressure_index);
1459 auto const c =
1461 auto const c_prev =
1463
1465 if (_process_data.temperature)
1466 {
1467 T = _process_data.temperature->getNodalValuesOnElement(_element, t);
1468 }
1469
1474
1477
1478 unsigned const n_integration_points =
1479 _integration_method.getNumberOfPoints();
1480
1482 double average_velocity_norm = 0.0;
1484
1486 pos.setElementID(_element.getID());
1487
1488 auto const& b =
1490 .projected_specific_body_force_vectors[_element.getID()];
1491
1494
1495 auto const& medium =
1496 *_process_data.media_map.getMedium(_element.getID());
1497 auto const& phase = medium.phase("AqueousLiquid");
1498 auto const& component = phase.component(
1500
1501 auto const& Ns =
1502 _process_data.shape_matrix_cache
1503 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1504
1505 for (unsigned ip(0); ip < n_integration_points; ++ip)
1506 {
1507 auto& ip_data = _ip_data[ip];
1508 auto const& dNdx = ip_data.dNdx;
1509 auto const& w = ip_data.integration_weight;
1510 auto const& N = Ns[ip];
1511 auto& phi = ip_data.porosity;
1512 auto const& phi_prev = ip_data.porosity_prev;
1513
1514 double const p_ip = N.dot(p);
1515 double const c_ip = N.dot(c);
1516
1517 vars.liquid_phase_pressure = p_ip;
1518 vars.concentration = c_ip;
1519
1520 if (_process_data.temperature)
1521 {
1522 vars.temperature = N.dot(T);
1523 }
1524
1525 // porosity
1526 {
1527 vars_prev.porosity = phi_prev;
1528
1529 phi = _process_data.chemically_induced_porosity_change
1530 ? phi_prev
1532 .template value<double>(vars, vars_prev, pos, t,
1533 dt);
1534
1535 vars.porosity = phi;
1536 }
1537
1538 auto const R =
1540 .template value<double>(vars, pos, t, dt);
1541
1542 auto const alpha_T = medium.template value<double>(
1544 auto const alpha_L = medium.template value<double>(
1546
1548 .template value<double>(vars, pos, t, dt);
1549 // first-order decay constant
1550 auto const alpha =
1552 .template value<double>(vars, pos, t, dt);
1553
1556 .value(vars, pos, t, dt));
1557
1560 vars, pos, t, dt));
1562 .template value<double>(vars, pos, t, dt);
1563 // Darcy flux
1564 GlobalDimVectorType const q =
1565 _process_data.has_gravity
1566 ? GlobalDimVectorType(-k / mu * (dNdx * p - rho * b))
1567 : GlobalDimVectorType(-k / mu * dNdx * p);
1568
1570 _process_data.stabilizer, _element.getID(), Dp, q, phi, alpha_T,
1571 alpha_L);
1572
1573 // matrix assembly
1574 local_Jac.noalias() +=
1575 N.transpose() * N * (rho * phi * R * (alpha + 1 / dt) * w);
1576
1577 KCC_Laplacian.noalias() += w * rho * dNdx.transpose() * D * dNdx;
1578
1579 auto const cdot = (c - c_prev) / dt;
1580 local_rhs.noalias() -=
1581 N.transpose() * N * (cdot + alpha * c) * (rho * phi * R * w);
1582
1583 ip_flux_vector.emplace_back(q * rho);
1584 average_velocity_norm += q.norm();
1585 }
1586
1588 _process_data.stabilizer, _ip_data,
1589 _process_data.shape_matrix_cache, ip_flux_vector,
1590 average_velocity_norm / static_cast<double>(n_integration_points),
1592
1593 local_rhs.noalias() -= KCC_Laplacian * c;
1594
1595 local_Jac.noalias() += KCC_Laplacian;
1596 }

References _element, _integration_method, _ip_data, _process_data, _transport_process_variables, NumLib::detail::assembleAdvectionMatrix(), NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::VariableArray::concentration, concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), MaterialPropertyLib::decay_rate, MaterialPropertyLib::density, first_concentration_index, MaterialPropertyLib::formEigenTensor(), getName(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::longitudinal_dispersivity, MaterialPropertyLib::permeability, MaterialPropertyLib::pore_diffusion, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, pressure_index, MaterialPropertyLib::retardation_factor, ParameterLib::SpatialPosition::setElementID(), MaterialPropertyLib::VariableArray::temperature, MaterialPropertyLib::transversal_dispersivity, and MaterialPropertyLib::viscosity.

Referenced by assembleWithJacobianForStaggeredScheme().

◆ assembleWithJacobianForStaggeredScheme()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianForStaggeredScheme ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
int const process_id,
std::vector< double > & local_b_data,
std::vector< double > & local_Jac_data )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 1322 of file ComponentTransportFEM.h.

1327 {
1328 if (process_id == _process_data.hydraulic_process_id)
1329 {
1332 }
1333 else
1334 {
1335 int const component_id = process_id - 1;
1338 component_id);
1339 }
1340 }
void assembleWithJacobianHydraulicEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data)
void assembleWithJacobianComponentTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_b_data, std::vector< double > &local_Jac_data, int const component_id)

References _process_data, assembleWithJacobianComponentTransportEquation(), and assembleWithJacobianHydraulicEquation().

◆ assembleWithJacobianHydraulicEquation()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::assembleWithJacobianHydraulicEquation ( double const t,
double const dt,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const & local_x_prev,
std::vector< double > & local_b_data,
std::vector< double > & local_Jac_data )
inline

Definition at line 1342 of file ComponentTransportFEM.h.

1346 {
1347 auto const p = local_x.template segment<pressure_size>(pressure_index);
1348 auto const c = local_x.template segment<concentration_size>(
1350
1351 auto const p_prev = local_x_prev.segment<pressure_size>(pressure_index);
1352 auto const c_prev =
1354
1359
1360 unsigned const n_integration_points =
1361 _integration_method.getNumberOfPoints();
1362
1364 pos.setElementID(_element.getID());
1365 auto const& b =
1367 .projected_specific_body_force_vectors[_element.getID()];
1368
1369 auto const& medium =
1370 *_process_data.media_map.getMedium(_element.getID());
1371 auto const& phase = medium.phase("AqueousLiquid");
1372
1375
1376 auto const& Ns =
1377 _process_data.shape_matrix_cache
1378 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1379
1380 for (unsigned ip(0); ip < n_integration_points; ++ip)
1381 {
1382 auto& ip_data = _ip_data[ip];
1383 auto const& dNdx = ip_data.dNdx;
1384 auto const& w = ip_data.integration_weight;
1385 auto const& N = Ns[ip];
1386 auto& phi = ip_data.porosity;
1387 auto const& phi_prev = ip_data.porosity_prev;
1388
1389 double const p_ip = N.dot(p);
1390 double const c_ip = N.dot(c);
1391
1392 double const cdot_ip = (c_ip - N.dot(c_prev)) / dt;
1393
1394 vars.liquid_phase_pressure = p_ip;
1395 vars.concentration = c_ip;
1396
1397 // porosity
1398 {
1399 vars_prev.porosity = phi_prev;
1400
1401 phi = _process_data.chemically_induced_porosity_change
1402 ? phi_prev
1404 .template value<double>(vars, vars_prev, pos, t,
1405 dt);
1406
1407 vars.porosity = phi;
1408 }
1409
1411 .template value<double>(vars, pos, t, dt);
1412
1415 vars, pos, t, dt));
1416
1418 .template value<double>(vars, pos, t, dt);
1419
1420 auto const drho_dp =
1422 .template dValue<double>(
1423 vars,
1425 pos, t, dt);
1426 auto const drho_dc =
1428 .template dValue<double>(
1430 t, dt);
1431
1432 // matrix assembly
1433 local_Jac.noalias() +=
1434 N.transpose() * N * (phi * drho_dp / dt * w) +
1435 w * dNdx.transpose() * rho * k / mu * dNdx;
1436
1437 local_rhs.noalias() -=
1438 N.transpose() * (drho_dp * N * p_prev + drho_dc * cdot_ip) *
1439 (phi * w) +
1440 dNdx.transpose() * k / mu * dNdx * p * (rho * w);
1441
1442 if (_process_data.has_gravity)
1443 {
1444 local_rhs.noalias() +=
1445 w * rho * dNdx.transpose() * k / mu * rho * b;
1446 }
1447 }
1448 }

References _element, _integration_method, _ip_data, _process_data, MaterialPropertyLib::concentration, MaterialPropertyLib::VariableArray::concentration, concentration_size, MathLib::createZeroedMatrix(), MathLib::createZeroedVector(), MaterialPropertyLib::density, first_concentration_index, MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::liquid_phase_pressure, MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, pressure_index, pressure_size, ParameterLib::SpatialPosition::setElementID(), and MaterialPropertyLib::viscosity.

Referenced by assembleWithJacobianForStaggeredScheme().

◆ calculateIntPtDarcyVelocity()

template<typename ShapeFunction, int GlobalDim>
std::vector< double > const & ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::calculateIntPtDarcyVelocity ( const double t,
Eigen::Ref< const NodalVectorType > const & p_nodal_values,
Eigen::Ref< const NodalVectorType > const & C_nodal_values,
Eigen::Ref< const NodalVectorType > const & T_nodal_values,
std::vector< double > & cache ) const
inline

Definition at line 1883 of file ComponentTransportFEM.h.

1889 {
1890 auto const n_integration_points =
1891 _integration_method.getNumberOfPoints();
1892
1893 cache.clear();
1897
1899 pos.setElementID(_element.getID());
1900
1901 auto const& b =
1903 .projected_specific_body_force_vectors[_element.getID()];
1904
1906
1907 auto const& medium =
1908 *_process_data.media_map.getMedium(_element.getID());
1909 auto const& phase = medium.phase("AqueousLiquid");
1910
1911 auto const& Ns =
1912 _process_data.shape_matrix_cache
1913 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1914
1915 for (unsigned ip = 0; ip < n_integration_points; ++ip)
1916 {
1917 auto const& ip_data = _ip_data[ip];
1918 auto const& dNdx = ip_data.dNdx;
1919 auto const& N = Ns[ip];
1920 auto const& porosity = ip_data.porosity;
1921
1922 double C_int_pt = 0.0;
1923 double p_int_pt = 0.0;
1924 double T_int_pt = 0.0;
1925
1929
1930 vars.concentration = C_int_pt;
1931 vars.liquid_phase_pressure = p_int_pt;
1932 vars.porosity = porosity;
1933 vars.temperature = T_int_pt;
1934
1935 // TODO (naumov) Temporary value not used by current material
1936 // models. Need extension of secondary variables interface.
1940 vars, pos, t, dt));
1942 .template value<double>(vars, pos, t, dt);
1944
1945 cache_mat.col(ip).noalias() = -K_over_mu * dNdx * p_nodal_values;
1946 if (_process_data.has_gravity)
1947 {
1948 auto const rho_w =
1950 .template value<double>(vars, pos, t, dt);
1951 // here it is assumed that the vector b is directed 'downwards'
1952 cache_mat.col(ip).noalias() += K_over_mu * rho_w * b;
1953 }
1954 }
1955
1956 return cache;
1957 }

References _element, _integration_method, _ip_data, _process_data, MaterialPropertyLib::VariableArray::concentration, MathLib::createZeroedMatrix(), MaterialPropertyLib::density, MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, MaterialPropertyLib::VariableArray::porosity, ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), MaterialPropertyLib::VariableArray::temperature, and MaterialPropertyLib::viscosity.

Referenced by computeSecondaryVariableConcrete(), and getIntPtDarcyVelocity().

◆ calculateIntPtLiquidDensity()

template<typename ShapeFunction, int GlobalDim>
std::vector< double > const & ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::calculateIntPtLiquidDensity ( const double t,
Eigen::Ref< const NodalVectorType > const & p_nodal_values,
Eigen::Ref< const NodalVectorType > const & C_nodal_values,
Eigen::Ref< const NodalVectorType > const & T_nodal_values,
std::vector< double > & cache ) const
inline

Definition at line 1753 of file ComponentTransportFEM.h.

1759 {
1760 auto const n_integration_points =
1761 _integration_method.getNumberOfPoints();
1762
1763 cache.clear();
1766
1768 pos.setElementID(_element.getID());
1769
1771
1772 auto const& medium =
1773 *_process_data.media_map.getMedium(_element.getID());
1774 auto const& phase = medium.phase("AqueousLiquid");
1775
1776 auto const& Ns =
1777 _process_data.shape_matrix_cache
1778 .NsHigherOrder<typename ShapeFunction::MeshElement>();
1779
1780 for (unsigned ip = 0; ip < n_integration_points; ++ip)
1781 {
1782 auto const& N = Ns[ip];
1783
1784 double C_int_pt = 0.0;
1785 double p_int_pt = 0.0;
1786 double T_int_pt = 0.0;
1787
1791
1792 vars.concentration = C_int_pt;
1793 vars.liquid_phase_pressure = p_int_pt;
1794 vars.temperature = T_int_pt;
1795
1796 // TODO (naumov) Temporary value not used by current material
1797 // models. Need extension of secondary variables interface.
1799
1801 .template value<double>(vars, pos, t, dt);
1802 cache_vec[ip] = rho_w;
1803 }
1804
1805 return cache;
1806 }

References _element, _integration_method, _process_data, MaterialPropertyLib::VariableArray::concentration, MathLib::createZeroedVector(), MaterialPropertyLib::density, MaterialPropertyLib::VariableArray::liquid_phase_pressure, ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), and MaterialPropertyLib::VariableArray::temperature.

Referenced by getIntPtLiquidDensity().

◆ computeReactionRelatedSecondaryVariable()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeReactionRelatedSecondaryVariable ( std::size_t const ele_id)
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 2058 of file ComponentTransportFEM.h.

2060 {
2061 auto const n_integration_points =
2062 _integration_method.getNumberOfPoints();
2063
2064 if (_process_data.chemically_induced_porosity_change)
2065 {
2066 auto const& medium = *_process_data.media_map.getMedium(ele_id);
2067
2068 for (auto& ip_data : _ip_data)
2069 {
2070 ip_data.porosity = ip_data.porosity_prev;
2071
2072 _process_data.chemical_solver_interface
2073 ->updatePorosityPostReaction(ip_data.chemical_system_id,
2074 medium, ip_data.porosity);
2075 }
2076
2077 (*_process_data.mesh_prop_porosity)[ele_id] =
2078 std::accumulate(_ip_data.begin(), _ip_data.end(), 0.,
2079 [](double const s, auto const& ip)
2080 { return s + ip.porosity; }) /
2082 }
2083
2086 std::transform(_ip_data.begin(), _ip_data.end(),
2088 [](auto const& ip_data)
2089 { return ip_data.chemical_system_id; });
2090
2091 _process_data.chemical_solver_interface->computeSecondaryVariable(
2093 }

References _integration_method, _ip_data, and _process_data.

◆ computeSecondaryVariableConcrete()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::computeSecondaryVariableConcrete ( double const t,
double const ,
Eigen::VectorXd const & local_x,
Eigen::VectorXd const &  )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 2031 of file ComponentTransportFEM.h.

2036 {
2037 auto const local_p =
2039 auto const local_C = local_x.template segment<concentration_size>(
2041 auto const local_T = getLocalTemperature(t, local_x);
2042
2045
2046 auto const n_integration_points =
2047 _integration_method.getNumberOfPoints();
2048 auto const ele_velocity_mat =
2050
2051 auto const ele_id = _element.getID();
2053 &(*_process_data.mesh_prop_velocity)[ele_id * GlobalDim],
2054 GlobalDim) =
2055 ele_velocity_mat.rowwise().sum() / n_integration_points;
2056 }
std::vector< double > const & calculateIntPtDarcyVelocity(const double t, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< const NodalVectorType > const &C_nodal_values, Eigen::Ref< const NodalVectorType > const &T_nodal_values, std::vector< double > &cache) const
Eigen::Map< const Matrix > toMatrix(std::vector< double > const &data, Eigen::MatrixXd::Index rows, Eigen::MatrixXd::Index cols)

References _element, _integration_method, _process_data, calculateIntPtDarcyVelocity(), first_concentration_index, getLocalTemperature(), pressure_index, and MathLib::toMatrix().

◆ getFlux()

template<typename ShapeFunction, int GlobalDim>
Eigen::Vector3d ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getFlux ( MathLib::Point3d const & ,
double const ,
std::vector< double > const &  ) const
inlineoverridevirtual

Computes the flux in the point p_local_coords that is given in local coordinates using the values from local_x. Fits to monolithic scheme.

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 1969 of file ComponentTransportFEM.h.

1972 {
1977
1978 // Eval shape matrices at given point
1979 // Note: Axial symmetry is set to false here, because we only need dNdx
1980 // here, which is not affected by axial symmetry.
1981 auto const shape_matrices =
1983 GlobalDim>(
1984 _element, false /*is_axially_symmetric*/,
1986
1988 pos.setElementID(_element.getID());
1989 auto const& b =
1991 .projected_specific_body_force_vectors[_element.getID()];
1992
1994
1995 auto const& medium =
1996 *_process_data.media_map.getMedium(_element.getID());
1997 auto const& phase = medium.phase("AqueousLiquid");
1998
1999 // local_x contains the local concentration and pressure values
2000 double c_int_pt;
2002 vars.concentration = c_int_pt;
2003
2004 double p_int_pt;
2006 vars.liquid_phase_pressure = p_int_pt;
2007
2008 // TODO (naumov) Temporary value not used by current material models.
2009 // Need extension of secondary variables interface.
2013 vars, pos, t, dt));
2014
2016 .template value<double>(vars, pos, t, dt);
2018
2021 .template value<double>(vars, pos, t, dt);
2022 if (_process_data.has_gravity)
2023 {
2024 q += K_over_mu * rho_w * b;
2025 }
2026 Eigen::Vector3d flux(0.0, 0.0, 0.0);
2027 flux.head<GlobalDim>() = rho_w * q;
2028 return flux;
2029 }

References _element, _process_data, NumLib::computeShapeMatrices(), MaterialPropertyLib::VariableArray::concentration, concentration_size, MaterialPropertyLib::density, first_concentration_index, MaterialPropertyLib::formEigenTensor(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::permeability, pressure_index, pressure_size, ParameterLib::SpatialPosition::setElementID(), NumLib::detail::shapeFunctionInterpolate(), and MaterialPropertyLib::viscosity.

◆ getHeatEnergyCoefficient()

template<typename ShapeFunction, int GlobalDim>
double ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getHeatEnergyCoefficient ( MaterialPropertyLib::VariableArray const & vars,
const double porosity,
const double fluid_density,
const double specific_heat_capacity_fluid,
ParameterLib::SpatialPosition const & pos,
double const t,
double const dt )
inlineprivate

Definition at line 2220 of file ComponentTransportFEM.h.

2225 {
2226 auto const& medium =
2227 *_process_data.media_map.getMedium(this->_element.getID());
2228 auto const& solid_phase = medium.phase("Solid");
2229
2230 auto const specific_heat_capacity_solid =
2232 .property(
2234 .template value<double>(vars, pos, t, dt);
2235
2236 auto const solid_density =
2238 .template value<double>(vars, pos, t, dt);
2239
2242 }

References _process_data, MaterialPropertyLib::density, MeshLib::Element::getID(), and MaterialPropertyLib::specific_heat_capacity.

Referenced by assembleHeatTransportEquation().

◆ getIntPtDarcyVelocity()

template<typename ShapeFunction, int GlobalDim>
std::vector< double > const & ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtDarcyVelocity ( const double t,
std::vector< GlobalVector * > const & x,
std::vector< NumLib::LocalToGlobalIndexMap const * > const & dof_table,
std::vector< double > & cache ) const
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 1808 of file ComponentTransportFEM.h.

1813 {
1814 assert(x.size() == dof_table.size());
1815
1816 auto const n_processes = x.size();
1818 local_x.reserve(n_processes);
1819
1821 {
1822 auto const indices =
1824 assert(!indices.empty());
1825 local_x.push_back(x[process_id]->get(indices));
1826 }
1827
1828 // only one process, must be monolithic.
1829 if (n_processes == 1)
1830 {
1836 local_T.setConstant(ShapeFunction::NPOINTS,
1838 int const temperature_index =
1839 _process_data.isothermal ? -1 : ShapeFunction::NPOINTS;
1840 if (temperature_index != -1)
1841 {
1844 }
1846 cache);
1847 }
1848
1849 // multiple processes, must be staggered.
1850 {
1851 constexpr int pressure_process_id = 0;
1853 // Normally temperature process is not there,
1854 // hence set the default temperature index to -1
1855 int temperature_process_id = -1;
1856
1857 // check whether temperature process exists
1858 if (!_process_data.isothermal)
1859 {
1860 // if temperature process exists, its id is 1
1862 // then the concentration index shifts to 2
1864 }
1865
1871 local_T.setConstant(ShapeFunction::NPOINTS,
1873 if (temperature_process_id != -1)
1874 {
1877 }
1879 cache);
1880 }
1881 }
std::vector< GlobalIndexType > getIndices(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)

References _element, _process_data, calculateIntPtDarcyVelocity(), concentration_size, first_concentration_index, NumLib::getIndices(), pressure_index, pressure_size, temperature_index, and temperature_size.

◆ getIntPtLiquidDensity()

template<typename ShapeFunction, int GlobalDim>
std::vector< double > const & ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtLiquidDensity ( const double t,
std::vector< GlobalVector * > const & x,
std::vector< NumLib::LocalToGlobalIndexMap const * > const & dof_table,
std::vector< double > & cache ) const
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 1678 of file ComponentTransportFEM.h.

1683 {
1684 assert(x.size() == dof_table.size());
1685
1686 auto const n_processes = x.size();
1688 local_x.reserve(n_processes);
1689
1691 {
1692 auto const indices =
1694 assert(!indices.empty());
1695 local_x.push_back(x[process_id]->get(indices));
1696 }
1697
1698 // only one process, must be monolithic.
1699 if (n_processes == 1)
1700 {
1706 local_T.setConstant(ShapeFunction::NPOINTS,
1708 int const temperature_index =
1709 _process_data.isothermal ? -1 : ShapeFunction::NPOINTS;
1710 if (temperature_index != -1)
1711 {
1714 }
1716 cache);
1717 }
1718
1719 // multiple processes, must be staggered.
1720 {
1721 constexpr int pressure_process_id = 0;
1723 // Normally temperature process is not there,
1724 // hence set the default temperature index to -1
1725 int temperature_process_id = -1;
1726
1727 // check whether temperature process exists
1728 if (!_process_data.isothermal)
1729 {
1730 // if temperature process exists, its id is 1
1732 // then the concentration index shifts to 2
1734 }
1735
1741 local_T.setConstant(ShapeFunction::NPOINTS,
1743 if (temperature_process_id != -1)
1744 {
1747 }
1749 cache);
1750 }
1751 }
std::vector< double > const & calculateIntPtLiquidDensity(const double t, Eigen::Ref< const NodalVectorType > const &p_nodal_values, Eigen::Ref< const NodalVectorType > const &C_nodal_values, Eigen::Ref< const NodalVectorType > const &T_nodal_values, std::vector< double > &cache) const

References _element, _process_data, calculateIntPtLiquidDensity(), concentration_size, first_concentration_index, NumLib::getIndices(), pressure_index, pressure_size, temperature_index, and temperature_size.

◆ getIntPtMolarFlux()

template<typename ShapeFunction, int GlobalDim>
std::vector< double > const & ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getIntPtMolarFlux ( const double t,
std::vector< GlobalVector * > const & x,
std::vector< NumLib::LocalToGlobalIndexMap const * > const & dof_tables,
std::vector< double > & cache,
int const component_id ) const
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 2095 of file ComponentTransportFEM.h.

2099 {
2101
2102 auto const n_processes = x.size();
2104 {
2105 auto const indices =
2107 assert(!indices.empty());
2108 auto const local_solution = x[process_id]->get(indices);
2112 }
2114
2115 auto const p = local_x.template segment<pressure_size>(pressure_index);
2116 auto const c = local_x.template segment<concentration_size>(
2118
2119 auto const n_integration_points =
2120 _integration_method.getNumberOfPoints();
2121
2122 cache.clear();
2126
2128 pos.setElementID(_element.getID());
2129
2130 auto const& b =
2132 .projected_specific_body_force_vectors[_element.getID()];
2133
2135
2136 auto const& medium =
2137 *_process_data.media_map.getMedium(_element.getID());
2138 auto const& phase = medium.phase("AqueousLiquid");
2139
2140 auto const& component = phase.component(
2142
2143 auto const& Ns =
2144 _process_data.shape_matrix_cache
2145 .NsHigherOrder<typename ShapeFunction::MeshElement>();
2146
2147 for (unsigned ip = 0; ip < n_integration_points; ++ip)
2148 {
2149 auto const& ip_data = _ip_data[ip];
2150 auto const& dNdx = ip_data.dNdx;
2151 auto const& N = Ns[ip];
2152 auto const& phi = ip_data.porosity;
2153
2154 double const p_ip = N.dot(p);
2155 double const c_ip = N.dot(c);
2156
2157 vars.concentration = c_ip;
2158 vars.liquid_phase_pressure = p_ip;
2159 vars.porosity = phi;
2160
2162
2165 vars, pos, t, dt));
2167 .template value<double>(vars, pos, t, dt);
2169 .template value<double>(vars, pos, t, dt);
2170
2171 // Darcy flux
2172 GlobalDimVectorType const q =
2173 _process_data.has_gravity
2174 ? GlobalDimVectorType(-k / mu * (dNdx * p - rho * b))
2175 : GlobalDimVectorType(-k / mu * dNdx * p);
2176
2177 auto const alpha_T = medium.template value<double>(
2179 auto const alpha_L = medium.template value<double>(
2183 .value(vars, pos, t, dt));
2184
2185 // Hydrodynamic dispersion
2187 _process_data.stabilizer, _element.getID(), Dp, q, phi, alpha_T,
2188 alpha_L);
2189
2190 cache_mat.col(ip).noalias() = q * c_ip - D * dNdx * c;
2191 }
2192
2193 return cache;
2194 }
Eigen::Map< const Vector > toVector(std::vector< double > const &data, Eigen::VectorXd::Index size)
Creates an Eigen mapped vector from the given data vector.

References _element, _integration_method, _ip_data, _process_data, _transport_process_variables, NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::VariableArray::concentration, concentration_size, MathLib::createZeroedMatrix(), MaterialPropertyLib::density, first_concentration_index, MaterialPropertyLib::formEigenTensor(), NumLib::getIndices(), getName(), MaterialPropertyLib::VariableArray::liquid_phase_pressure, MaterialPropertyLib::longitudinal_dispersivity, MaterialPropertyLib::permeability, MaterialPropertyLib::pore_diffusion, MaterialPropertyLib::VariableArray::porosity, pressure_index, ParameterLib::SpatialPosition::setElementID(), MathLib::toVector(), MaterialPropertyLib::transversal_dispersivity, and MaterialPropertyLib::viscosity.

◆ getLocalTemperature()

template<typename ShapeFunction, int GlobalDim>
NodalVectorType ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getLocalTemperature ( double const t,
Eigen::VectorXd const & local_x ) const
inlineprivate

Definition at line 2285 of file ComponentTransportFEM.h.

2287 {
2289 if (_process_data.isothermal)
2290 {
2291 if (_process_data.temperature)
2292 {
2293 local_T = _process_data.temperature->getNodalValuesOnElement(
2294 _element, t);
2295 }
2296 else
2297 {
2299 }
2300 }
2301 else
2302 {
2303 local_T =
2305 }
2306 return local_T;
2307 }

References _element, _process_data, temperature_index, and temperature_size.

Referenced by assembleComponentTransportEquation(), assembleHeatTransportEquation(), assembleHydraulicEquation(), and computeSecondaryVariableConcrete().

◆ getShapeMatrix()

template<typename ShapeFunction, int GlobalDim>
Eigen::Map< const Eigen::RowVectorXd > ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getShapeMatrix ( const unsigned integration_point) const
inlineoverridevirtual

Provides the shape matrix at the given integration point.

Implements NumLib::ExtrapolatableElement.

Definition at line 1959 of file ComponentTransportFEM.h.

1961 {
1962 auto const& N = _process_data.shape_matrix_cache.NsHigherOrder<
1964
1965 // assumes N is stored contiguously in memory
1966 return Eigen::Map<const Eigen::RowVectorXd>(N.data(), N.size());
1967 }

References _process_data.

◆ getThermalConductivityDispersivity()

template<typename ShapeFunction, int GlobalDim>
GlobalDimMatrixType ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::getThermalConductivityDispersivity ( MaterialPropertyLib::VariableArray const & vars,
const double fluid_density,
const double specific_heat_capacity_fluid,
const GlobalDimVectorType & velocity,
ParameterLib::SpatialPosition const & pos,
double const t,
double const dt )
inlineprivate

Definition at line 2244 of file ComponentTransportFEM.h.

2250 {
2251 auto const& medium =
2252 *_process_data.media_map.getMedium(_element.getID());
2253
2256 medium
2257 .property(
2259 .value(vars, pos, t, dt));
2260
2262 medium
2265 .template value<double>();
2266
2268 medium
2271 .template value<double>();
2272
2273 // Thermal conductivity is moved outside and zero matrix is passed
2274 // instead due to multiplication with fluid's density times specific
2275 // heat capacity.
2276 return thermal_conductivity +
2279 _process_data.stabilizer, _element.getID(),
2283 }

References _element, _process_data, NumLib::computeHydrodynamicDispersion(), MaterialPropertyLib::formEigenTensor(), and MaterialPropertyLib::thermal_conductivity.

Referenced by assembleHeatTransportEquation().

◆ initializeChemicalSystemConcrete()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::initializeChemicalSystemConcrete ( Eigen::VectorXd const & local_x,
double const t )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 312 of file ComponentTransportFEM.h.

314 {
315 assert(_process_data.chemical_solver_interface);
316
317 auto const& medium =
318 *_process_data.media_map.getMedium(_element.getID());
319
321 pos.setElementID(_element.getID());
322
323 auto const& Ns =
324 _process_data.shape_matrix_cache
325 .NsHigherOrder<typename ShapeFunction::MeshElement>();
326
327 unsigned const n_integration_points =
328 _integration_method.getNumberOfPoints();
329
330 for (unsigned ip = 0; ip < n_integration_points; ip++)
331 {
332 auto& ip_data = _ip_data[ip];
333 auto const& N = Ns[ip];
334 auto const& chemical_system_id = ip_data.chemical_system_id;
335
336 // set position with N as the shape matrix at the current
337 // integration point
338 pos.setCoordinates(MathLib::Point3d(
341 N)));
342
343 auto const n_component = _transport_process_variables.size();
345 for (unsigned component_id = 0; component_id < n_component;
346 ++component_id)
347 {
348 auto const concentration_index =
351 auto const local_C =
354
357 }
358
359 _process_data.chemical_solver_interface
360 ->initializeChemicalSystemConcrete(C_int_pt, chemical_system_id,
361 medium, pos, t);
362 }
363 }

References _element, _integration_method, _ip_data, _process_data, _transport_process_variables, concentration_size, first_concentration_index, NumLib::interpolateCoordinates(), ParameterLib::SpatialPosition::setCoordinates(), ParameterLib::SpatialPosition::setElementID(), and NumLib::detail::shapeFunctionInterpolate().

◆ postSpeciationCalculation()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::postSpeciationCalculation ( std::size_t const ele_id,
double const t,
double const dt )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 430 of file ComponentTransportFEM.h.

432 {
433 if (!_process_data.chemically_induced_porosity_change)
434 {
435 return;
436 }
437
438 auto const& medium = *_process_data.media_map.getMedium(ele_id);
439
441 pos.setElementID(ele_id);
442
443 for (auto& ip_data : _ip_data)
444 {
445 ip_data.porosity = ip_data.porosity_prev;
446
447 _process_data.chemical_solver_interface
448 ->updateVolumeFractionPostReaction(ip_data.chemical_system_id,
449 medium, pos,
450 ip_data.porosity, t, dt);
451
452 _process_data.chemical_solver_interface->updatePorosityPostReaction(
453 ip_data.chemical_system_id, medium, ip_data.porosity);
454 }
455 }

References _ip_data, _process_data, and ParameterLib::SpatialPosition::setElementID().

◆ postTimestepConcrete()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::postTimestepConcrete ( Eigen::VectorXd const & ,
Eigen::VectorXd const & ,
double const ,
double const ,
int const  )
inlineoverridevirtual

Reimplemented from ProcessLib::LocalAssemblerInterface.

Definition at line 2196 of file ComponentTransportFEM.h.

2200 {
2201 unsigned const n_integration_points =
2202 _integration_method.getNumberOfPoints();
2203
2204 for (unsigned ip = 0; ip < n_integration_points; ip++)
2205 {
2206 _ip_data[ip].pushBackState();
2207 }
2208 }

References _integration_method, and _ip_data.

◆ setChemicalSystemConcrete()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemConcrete ( Eigen::VectorXd const & local_x,
double const t,
double dt )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 365 of file ComponentTransportFEM.h.

367 {
368 assert(_process_data.chemical_solver_interface);
369
370 auto const& medium =
371 _process_data.media_map.getMedium(_element.getID());
372
375
377 pos.setElementID(_element.getID());
378
379 auto const& Ns =
380 _process_data.shape_matrix_cache
381 .NsHigherOrder<typename ShapeFunction::MeshElement>();
382
383 unsigned const n_integration_points =
384 _integration_method.getNumberOfPoints();
385
386 for (unsigned ip = 0; ip < n_integration_points; ip++)
387 {
388 auto& ip_data = _ip_data[ip];
389 auto const& N = Ns[ip];
390 auto& porosity = ip_data.porosity;
391 auto const& porosity_prev = ip_data.porosity_prev;
392 auto const& chemical_system_id = ip_data.chemical_system_id;
393
394 auto const n_component = _transport_process_variables.size();
396 for (unsigned component_id = 0; component_id < n_component;
397 ++component_id)
398 {
399 auto const concentration_index =
402 auto const local_C =
405
408 }
409
410 {
411 vars_prev.porosity = porosity_prev;
412
413 porosity =
414 _process_data.chemically_induced_porosity_change
416 : medium
417 ->property(
419 .template value<double>(vars, vars_prev, pos, t,
420 dt);
421
422 vars.porosity = porosity;
423 }
424
425 _process_data.chemical_solver_interface->setChemicalSystemConcrete(
427 }
428 }

References _element, _integration_method, _ip_data, _process_data, _transport_process_variables, concentration_size, first_concentration_index, MaterialPropertyLib::porosity, MaterialPropertyLib::VariableArray::porosity, ParameterLib::SpatialPosition::setElementID(), and NumLib::detail::shapeFunctionInterpolate().

◆ setChemicalSystemID()

template<typename ShapeFunction, int GlobalDim>
void ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::setChemicalSystemID ( std::size_t const )
inlineoverridevirtual

Implements ProcessLib::ComponentTransport::ComponentTransportLocalAssemblerInterface.

Definition at line 292 of file ComponentTransportFEM.h.

293 {
294 assert(_process_data.chemical_solver_interface);
295 // chemical system index map
297 _process_data.chemical_solver_interface->chemical_system_index_map;
298
299 unsigned const n_integration_points =
300 _integration_method.getNumberOfPoints();
301 for (unsigned ip = 0; ip < n_integration_points; ip++)
302 {
303 _ip_data[ip].chemical_system_id =
305 ? 0
306 : chemical_system_index_map.back() + 1;
309 }
310 }

References _integration_method, _ip_data, and _process_data.

Member Data Documentation

◆ _element

◆ _integration_method

◆ _ip_data

◆ _process_data

◆ _transport_process_variables

◆ concentration_size

◆ first_concentration_index

◆ pressure_index

◆ pressure_size

◆ temperature_index

template<typename ShapeFunction, int GlobalDim>
const int ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::temperature_index = -1
private

◆ temperature_size

template<typename ShapeFunction, int GlobalDim>
const int ProcessLib::ComponentTransport::LocalAssemblerData< ShapeFunction, GlobalDim >::temperature_size = ShapeFunction::NPOINTS
staticprivate

The documentation for this class was generated from the following file: