OGS
ThermoRichardsFlowProcess.cpp
Go to the documentation of this file.
1 
12 
13 #include <cassert>
14 
15 #include "BaseLib/Error.h"
16 #include "MeshLib/Elements/Utils.h"
18 #include "ProcessLib/Process.h"
20 #include "ThermoRichardsFlowFEM.h"
21 
22 namespace ProcessLib
23 {
24 namespace ThermoRichardsFlow
25 {
27  std::string name,
28  MeshLib::Mesh& mesh,
29  std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
30  std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters,
31  unsigned const integration_order,
32  std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>&&
33  process_variables,
34  ThermoRichardsFlowProcessData&& process_data,
35  SecondaryVariableCollection&& secondary_variables,
36  bool const use_monolithic_scheme)
37  : Process(std::move(name), mesh, std::move(jacobian_assembler), parameters,
38  integration_order, std::move(process_variables),
39  std::move(secondary_variables), use_monolithic_scheme),
40  _process_data(std::move(process_data))
41 {
42  _heat_flux = MeshLib::getOrCreateMeshProperty<double>(
43  mesh, "HeatFlux", MeshLib::MeshItemType::Node, 1);
44 
45  _hydraulic_flow = MeshLib::getOrCreateMeshProperty<double>(
46  mesh, "HydraulicFlow", MeshLib::MeshItemType::Node, 1);
47 
48  // TODO (naumov) remove ip suffix. Probably needs modification of the mesh
49  // properties, s.t. there is no "overlapping" with cell/point data.
50  // See getOrCreateMeshProperty.
51  _integration_point_writer.emplace_back(
52  std::make_unique<IntegrationPointWriter>(
53  "saturation_ip", 1 /*n components*/, integration_order,
55 
56  _integration_point_writer.emplace_back(
57  std::make_unique<IntegrationPointWriter>(
58  "porosity_ip", 1 /*n components*/, integration_order,
60 }
61 
63  NumLib::LocalToGlobalIndexMap const& dof_table,
64  MeshLib::Mesh const& mesh,
65  unsigned const integration_order)
66 {
67  using nlohmann::json;
68 
69  const int process_id = 0;
70  const int variable_id = 0;
71  ProcessLib::createLocalAssemblers<ThermoRichardsFlowLocalAssembler>(
72  mesh.getDimension(), mesh.getElements(), dof_table,
73  getProcessVariables(process_id)[variable_id]
74  .get()
75  .getShapeFunctionOrder(),
76  _local_assemblers, mesh.isAxiallySymmetric(), integration_order,
78 
79  auto add_secondary_variable = [&](std::string const& name,
80  int const num_components,
81  auto get_ip_values_function)
82  {
84  name,
85  makeExtrapolator(num_components, getExtrapolator(),
87  std::move(get_ip_values_function)));
88  };
89 
90  add_secondary_variable("velocity", mesh.getDimension(),
92 
93  add_secondary_variable("saturation", 1,
95 
96  add_secondary_variable("porosity", 1, &LocalAssemblerIF::getIntPtPorosity);
97 
98  add_secondary_variable("dry_density_solid", 1,
100 
101  _process_data.element_saturation = MeshLib::getOrCreateMeshProperty<double>(
102  const_cast<MeshLib::Mesh&>(mesh), "saturation_avg",
104 
105  _process_data.element_porosity = MeshLib::getOrCreateMeshProperty<double>(
106  const_cast<MeshLib::Mesh&>(mesh), "porosity_avg",
108 
109  // Set initial conditions for integration point data.
110  for (auto const& ip_writer : _integration_point_writer)
111  {
112  // Find the mesh property with integration point writer's name.
113  auto const& name = ip_writer->name();
114  if (!mesh.getProperties().existsPropertyVector<double>(name))
115  {
116  continue;
117  }
118  auto const& mesh_property =
119  *mesh.getProperties().template getPropertyVector<double>(name);
120 
121  // The mesh property must be defined on integration points.
122  if (mesh_property.getMeshItemType() !=
124  {
125  continue;
126  }
127 
128  auto const ip_meta_data = getIntegrationPointMetaData(mesh, name);
129 
130  // Check the number of components.
131  if (ip_meta_data.n_components !=
132  mesh_property.getNumberOfGlobalComponents())
133  {
134  OGS_FATAL(
135  "Different number of components in meta data ({:d}) than in "
136  "the integration point field data for '{:s}': {:d}.",
137  ip_meta_data.n_components, name,
138  mesh_property.getNumberOfGlobalComponents());
139  }
140 
141  // Now we have a properly named vtk's field data array and the
142  // corresponding meta data.
143  std::size_t position = 0;
144  for (auto& local_asm : _local_assemblers)
145  {
146  std::size_t const integration_points_read =
147  local_asm->setIPDataInitialConditions(
148  name, &mesh_property[position],
149  ip_meta_data.integration_order);
150  if (integration_points_read == 0)
151  {
152  OGS_FATAL(
153  "No integration points read in the integration point "
154  "initial conditions set function.");
155  }
156  position += integration_points_read * ip_meta_data.n_components;
157  }
158  }
159 
160  // Initialize local assemblers after all variables have been set.
164 }
165 
167  std::vector<GlobalVector*>& x, double const t, int const process_id)
168 {
169  if (process_id != 0)
170  {
171  return;
172  }
173  DBUG("SetInitialConditions ThermoRichardsFlowProcess.");
174 
178  process_id);
179 }
180 
182  const double t, double const dt, std::vector<GlobalVector*> const& x,
183  std::vector<GlobalVector*> const& xdot, int const process_id,
185 {
186  DBUG("Assemble the equations for ThermoRichardsFlowProcess.");
187 
188  std::vector<std::reference_wrapper<NumLib::LocalToGlobalIndexMap>>
189  dof_table = {std::ref(*_local_to_global_index_map)};
190  ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
191 
192  // Call global assembler for each local assembly item.
195  pv.getActiveElementIDs(), dof_table, t, dt, x, xdot, process_id, M, K,
196  b);
197 }
198 
200  const double t, double const dt, std::vector<GlobalVector*> const& x,
201  std::vector<GlobalVector*> const& xdot, const double dxdot_dx,
202  const double dx_dx, int const process_id, GlobalMatrix& M, GlobalMatrix& K,
203  GlobalVector& b, GlobalMatrix& Jac)
204 {
205  std::vector<std::reference_wrapper<NumLib::LocalToGlobalIndexMap>>
206  dof_tables;
207 
208  DBUG(
209  "Assemble the Jacobian of ThermoRichardsFlow for the monolithic "
210  "scheme.");
211  dof_tables.emplace_back(*_local_to_global_index_map);
212 
213  ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
214 
217  _local_assemblers, pv.getActiveElementIDs(), dof_tables, t, dt, x, xdot,
218  dxdot_dx, dx_dx, process_id, M, K, b, Jac);
219 
220  auto copyRhs = [&](int const variable_id, auto& output_vector)
221  {
222  transformVariableFromGlobalVector(b, variable_id, dof_tables[0],
223  output_vector, std::negate<double>());
224  };
225 
226  copyRhs(0, *_heat_flux);
227  copyRhs(1, *_hydraulic_flow);
228 }
229 
231  std::vector<GlobalVector*> const& x, double const t, double const dt,
232  const int process_id)
233 {
234  if (process_id != 0)
235  {
236  return;
237  }
238 
239  DBUG("PostTimestep ThermoRichardsFlowProcess.");
240 
241  auto const dof_tables = getDOFTables(x.size());
242 
243  ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
246  pv.getActiveElementIDs(), dof_tables, x, t, dt);
247 }
248 
250  const double t, const double dt, std::vector<GlobalVector*> const& x,
251  GlobalVector const& x_dot, int const process_id)
252 {
253  if (process_id != 0)
254  {
255  return;
256  }
257  DBUG(
258  "Compute the secondary variables for "
259  "ThermoRichardsFlowProcess.");
260  auto const dof_tables = getDOFTables(x.size());
261  ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
262 
265  pv.getActiveElementIDs(), dof_tables, t, dt, x, x_dot, process_id);
266 }
267 
268 std::vector<NumLib::LocalToGlobalIndexMap const*>
269 ThermoRichardsFlowProcess::getDOFTables(int const number_of_processes) const
270 {
271  std::vector<NumLib::LocalToGlobalIndexMap const*> dof_tables;
272  dof_tables.reserve(number_of_processes);
273  std::generate_n(std::back_inserter(dof_tables), number_of_processes,
274  [&]() { return _local_to_global_index_map.get(); });
275  return dof_tables;
276 }
277 
278 } // namespace ThermoRichardsFlow
279 } // namespace ProcessLib
#define OGS_FATAL(...)
Definition: Error.h:26
void DBUG(char const *fmt, Args const &... args)
Definition: Logging.h:27
Global vector based on Eigen vector.
Definition: EigenVector.h:26
bool isAxiallySymmetric() const
Definition: Mesh.h:126
unsigned getDimension() const
Returns the dimension of the mesh (determined by the maximum dimension over all elements).
Definition: Mesh.h:71
std::vector< Element * > const & getElements() const
Get the element-vector for the mesh.
Definition: Mesh.h:98
Properties & getProperties()
Definition: Mesh.h:123
bool existsPropertyVector(std::string const &name) const
virtual void postTimestep(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< GlobalVector * > const &x, double const t, double const dt)
virtual void initialize(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
void setInitialConditions(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table, GlobalVector const &x, double const t, bool const use_monolithic_scheme, int const process_id)
virtual void computeSecondaryVariable(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_dot, int const process_id)
std::vector< std::size_t > const & getActiveElementIDs() const
std::string const name
Definition: Process.h:323
NumLib::Extrapolator & getExtrapolator() const
Definition: Process.h:185
std::vector< std::unique_ptr< IntegrationPointWriter > > _integration_point_writer
Definition: Process.h:350
SecondaryVariableCollection _secondary_variables
Definition: Process.h:331
std::vector< std::reference_wrapper< ProcessVariable > > const & getProcessVariables(const int process_id) const
Definition: Process.h:145
VectorMatrixAssembler _global_assembler
Definition: Process.h:333
std::unique_ptr< NumLib::LocalToGlobalIndexMap > _local_to_global_index_map
Definition: Process.h:329
const bool _use_monolithic_scheme
Definition: Process.h:335
Handles configuration of several secondary variables from the project file.
void addSecondaryVariable(std::string const &internal_name, SecondaryVariableFunctions &&fcts)
std::vector< std::unique_ptr< LocalAssemblerIF > > _local_assemblers
void postTimestepConcreteProcess(std::vector< GlobalVector * > const &x, double const t, double const dt, const int process_id) override
void setInitialConditionsConcreteProcess(std::vector< GlobalVector * > &x, double const t, int const) override
ThermoRichardsFlowProcess(std::string name, MeshLib::Mesh &mesh, std::unique_ptr< ProcessLib::AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase >> const &parameters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable >>> &&process_variables, ThermoRichardsFlowProcessData &&process_data, SecondaryVariableCollection &&secondary_variables, bool const use_monolithic_scheme)
std::vector< NumLib::LocalToGlobalIndexMap const * > getDOFTables(const int number_of_processes) const
void computeSecondaryVariableConcrete(double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_dot, int const process_id) override
void assembleConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b) override
void initializeConcreteProcess(NumLib::LocalToGlobalIndexMap const &dof_table, MeshLib::Mesh const &mesh, unsigned const integration_order) override
Process specific initialization called by initialize().
void assembleWithJacobianConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, const double dxdot_dx, const double dx_dx, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, GlobalMatrix &Jac) override
void assembleWithJacobian(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< std::reference_wrapper< NumLib::LocalToGlobalIndexMap >> const &dof_tables, const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, const double dxdot_dx, const double dx_dx, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, GlobalMatrix &Jac)
void assemble(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< std::reference_wrapper< NumLib::LocalToGlobalIndexMap >> const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &xdot, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b)
void transformVariableFromGlobalVector(GlobalVector const &input_vector, int const variable_id, NumLib::LocalToGlobalIndexMap const &local_to_global_index_map, MeshLib::PropertyVector< double > &output_vector, Functor mapFunction)
Definition: DOFTableUtil.h:59
IntegrationPointMetaData getIntegrationPointMetaData(MeshLib::Mesh const &mesh, std::string const &name)
SecondaryVariableFunctions makeExtrapolator(const unsigned num_components, NumLib::Extrapolator &extrapolator, LocalAssemblerCollection const &local_assemblers, typename NumLib::ExtrapolatableLocalAssemblerCollection< LocalAssemblerCollection >::IntegrationPointValuesMethod integration_point_values_method)
static void executeSelectedMemberOnDereferenced(Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)
static void executeSelectedMemberDereferenced(Object &object, Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)
static void executeMemberOnDereferenced(Method method, Container const &container, Args &&... args)
virtual std::vector< double > const & getIntPtDarcyVelocity(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0
virtual std::vector< double > getSaturation() const =0
virtual std::vector< double > const & getIntPtDryDensitySolid(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0
virtual std::vector< double > const & getIntPtSaturation(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0
virtual std::vector< double > getPorosity() const =0
virtual std::vector< double > const & getIntPtPorosity(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0