OGS
ProcessLib::HeatTransportBHE::BHE Namespace Reference

Classes

class  BHE_1P
 
class  BHE_1U
 
class  BHE_2U
 
class  BHE_CXA
 
class  BHE_CXC
 
struct  BHECommon
 
class  BHECommonCoaxial
 
class  BHECommonUType
 
struct  BoreholeGeometry
 
struct  BuildingPowerCurves
 
struct  FlowAndTemperature
 
struct  TemperatureCurveConstantFlow
 
struct  TemperatureCurveFlowCurve
 
struct  FixedPowerConstantFlow
 
struct  FixedPowerFlowCurve
 
struct  PowerCurveConstantFlow
 
struct  BuildingPowerCurveConstantFlow
 
struct  GroutParameters
 
struct  Pipe
 
struct  PipeConfiguration1PType
 
struct  PipeConfigurationCoaxial
 
struct  PipeConfigurationUType
 
struct  RefrigerantProperties
 
struct  AdvectiveThermalResistanceCoaxial
 
struct  PipeWallThermalResistanceCoaxial
 
struct  GroutAndGroutSoilExchangeThermalResistanceCoaxial
 
struct  ThermoMechanicalFlowProperties
 

Typedefs

using BHETypes = std::variant< BHE_1U, BHE_CXA, BHE_CXC, BHE_2U, BHE_1P >
 
using FlowAndTemperatureControl = std::variant< TemperatureCurveConstantFlow, TemperatureCurveFlowCurve, FixedPowerConstantFlow, FixedPowerFlowCurve, PowerCurveConstantFlow, BuildingPowerCurveConstantFlow >
 

Functions

double compute_R_gs (double const chi, double const R_g)
 
double compute_R_gg (double const chi, double const R_gs, double const R_ar, double const R_g)
 
std::array< double, 3 > thermalResistancesGroutSoil (double const chi, double const R_ar, double const R_g)
 
double compute_R_gs_2U (double const chi, double const R_g)
 
double compute_R_gg_2U (double const chi, double const R_gs, double const R_ar, double const R_g)
 
std::array< double, 4 > thermalResistancesGroutSoil2U (double const chi, double const R_ar_1, double const R_ar_2, double const R_g)
 
BoreholeGeometry createBoreholeGeometry (BaseLib::ConfigTree const &config)
 
static std::tuple< BoreholeGeometry, RefrigerantProperties, GroutParameters, FlowAndTemperatureControl, PipeConfiguration1PType, bool > parseBHE1PTypeConfig (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
template<typename T_BHE >
T_BHE createBHE1PType (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
template BHE_1P createBHE1PType< BHE_1P > (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
static std::tuple< BoreholeGeometry, RefrigerantProperties, GroutParameters, FlowAndTemperatureControl, PipeConfigurationCoaxial, bool > parseBHECoaxialConfig (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
template<typename T_BHE >
T_BHE createBHECoaxial (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
template BHE_CXA createBHECoaxial< BHE_CXA > (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
template BHE_CXC createBHECoaxial< BHE_CXC > (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
static std::tuple< BoreholeGeometry, RefrigerantProperties, GroutParameters, FlowAndTemperatureControl, PipeConfigurationUType, bool > parseBHEUTypeConfig (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
template<typename T_BHE >
T_BHE createBHEUType (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
template BHE_1U createBHEUType< BHE_1U > (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
template BHE_2U createBHEUType< BHE_2U > (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)
 
FlowAndTemperatureControl createFlowAndTemperatureControl (BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves, RefrigerantProperties const &refrigerant)
 
GroutParameters createGroutParameters (BaseLib::ConfigTree const &config)
 
double prandtlNumber (double const &viscosity, double const &heat_capacity, double const &heat_conductivity)
 
double reynoldsNumber (double const velocity_norm, double const pipe_diameter, double const viscosity, double const density)
 
double nusseltNumber (double const reynolds_number, double const prandtl_number, double const pipe_diameter, double const pipe_length)
 
double nusseltNumberAnnulus (double const reynolds_number, double const prandtl_number, double const diameter_ratio, double const pipe_aspect_ratio)
 
Pipe createPipe (BaseLib::ConfigTree const &config)
 
double coaxialPipesAnnulusDiameter (Pipe const &inner_pipe, Pipe const &outer_pipe)
 
RefrigerantProperties createRefrigerantProperties (BaseLib::ConfigTree const &config)
 
AdvectiveThermalResistanceCoaxial calculateAdvectiveThermalResistance (Pipe const &inner_pipe, Pipe const &outer_pipe, RefrigerantProperties const &fluid, double const Nu_inner_pipe, double const Nu_annulus)
 
PipeWallThermalResistanceCoaxial calculatePipeWallThermalResistance (Pipe const &inner_pipe, Pipe const &outer_pipe)
 
GroutAndGroutSoilExchangeThermalResistanceCoaxial calculateGroutAndGroutSoilExchangeThermalResistance (Pipe const &outer_pipe, GroutParameters const &grout_parameters, double const borehole_diameter)
 
ThermoMechanicalFlowProperties calculateThermoMechanicalFlowPropertiesPipe (Pipe const &pipe, double const length, RefrigerantProperties const &fluid, double const flow_rate)
 
ThermoMechanicalFlowProperties calculateThermoMechanicalFlowPropertiesAnnulus (Pipe const &inner_pipe, Pipe const &outer_pipe, double const length, RefrigerantProperties const &fluid, double const flow_rate)
 

Typedef Documentation

◆ BHETypes

Definition at line 26 of file BHETypes.h.

◆ FlowAndTemperatureControl

Function Documentation

◆ calculateAdvectiveThermalResistance()

AdvectiveThermalResistanceCoaxial ProcessLib::HeatTransportBHE::BHE::calculateAdvectiveThermalResistance ( Pipe const &  inner_pipe,
Pipe const &  outer_pipe,
RefrigerantProperties const &  fluid,
double const  Nu_inner_pipe,
double const  Nu_annulus 
)
inline

Definition at line 42 of file ThermalResistancesCoaxial.h.

46 {
47  double const hydraulic_diameter =
48  coaxialPipesAnnulusDiameter(inner_pipe, outer_pipe);
49 
50  auto advective_thermal_resistance = [&](double Nu, double diameter_ratio) {
51  constexpr double pi = boost::math::constants::pi<double>();
52  return 1.0 / (Nu * fluid.thermal_conductivity * pi) * diameter_ratio;
53  };
54  return {advective_thermal_resistance(Nu_inner_pipe, 1.),
55  advective_thermal_resistance(
56  Nu_annulus, hydraulic_diameter / inner_pipe.outsideDiameter()),
57  advective_thermal_resistance(
58  Nu_annulus, hydraulic_diameter / outer_pipe.diameter)};
59 }
double coaxialPipesAnnulusDiameter(Pipe const &inner_pipe, Pipe const &outer_pipe)
Definition: Pipe.h:57

References coaxialPipesAnnulusDiameter(), ProcessLib::HeatTransportBHE::BHE::Pipe::diameter, ProcessLib::HeatTransportBHE::BHE::Pipe::outsideDiameter(), and ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::thermal_conductivity.

Referenced by ProcessLib::HeatTransportBHE::BHE::BHECommonCoaxial::calcThermalResistances().

◆ calculateGroutAndGroutSoilExchangeThermalResistance()

GroutAndGroutSoilExchangeThermalResistanceCoaxial ProcessLib::HeatTransportBHE::BHE::calculateGroutAndGroutSoilExchangeThermalResistance ( Pipe const &  outer_pipe,
GroutParameters const &  grout_parameters,
double const  borehole_diameter 
)
inline

Definition at line 69 of file ThermalResistancesCoaxial.h.

72 {
73  constexpr double pi = boost::math::constants::pi<double>();
74 
75  double const outer_pipe_outside_diameter = outer_pipe.outsideDiameter();
76  double const chi =
77  std::log(std::sqrt(borehole_diameter * borehole_diameter +
78  outer_pipe_outside_diameter *
79  outer_pipe_outside_diameter) /
80  std::sqrt(2) / outer_pipe_outside_diameter) /
81  std::log(borehole_diameter / outer_pipe_outside_diameter);
82  double const R_g =
83  std::log(borehole_diameter / outer_pipe_outside_diameter) / 2 /
84  (pi * grout_parameters.lambda_g);
85  double const conductive_b = chi * R_g;
86  double const grout_soil = (1 - chi) * R_g;
87  return {conductive_b, grout_soil};
88 }

References ProcessLib::HeatTransportBHE::BHE::GroutParameters::lambda_g, and ProcessLib::HeatTransportBHE::BHE::Pipe::outsideDiameter().

Referenced by ProcessLib::HeatTransportBHE::BHE::BHECommonCoaxial::calcThermalResistances().

◆ calculatePipeWallThermalResistance()

PipeWallThermalResistanceCoaxial ProcessLib::HeatTransportBHE::BHE::calculatePipeWallThermalResistance ( Pipe const &  inner_pipe,
Pipe const &  outer_pipe 
)
inline

Definition at line 61 of file ThermalResistancesCoaxial.h.

63 {
64  return {inner_pipe.wallThermalResistance(),
65  outer_pipe.wallThermalResistance()};
66 }

References ProcessLib::HeatTransportBHE::BHE::Pipe::wallThermalResistance().

Referenced by ProcessLib::HeatTransportBHE::BHE::BHECommonCoaxial::calcThermalResistances().

◆ calculateThermoMechanicalFlowPropertiesAnnulus()

ThermoMechanicalFlowProperties ProcessLib::HeatTransportBHE::BHE::calculateThermoMechanicalFlowPropertiesAnnulus ( Pipe const &  inner_pipe,
Pipe const &  outer_pipe,
double const  length,
RefrigerantProperties const &  fluid,
double const  flow_rate 
)
inline

Definition at line 47 of file ThermoMechanicalFlowProperties.h.

50 {
51  double const Pr =
52  prandtlNumber(fluid.dynamic_viscosity, fluid.specific_heat_capacity,
53  fluid.thermal_conductivity);
54 
55  double const inner_pipe_outside_diameter = inner_pipe.outsideDiameter();
56 
57  // Velocity between the outer pipe and inner pipe.
58  double const velocity =
59  flow_rate / (outer_pipe.area() - inner_pipe.outsideArea());
60 
61  double const Re = reynoldsNumber(
62  velocity, outer_pipe.diameter - inner_pipe_outside_diameter,
63  fluid.dynamic_viscosity, fluid.density);
64 
65  double const diameter_ratio =
66  inner_pipe_outside_diameter / outer_pipe.diameter;
67  double const pipe_aspect_ratio =
68  (outer_pipe.diameter - inner_pipe_outside_diameter) / length;
69  double const nusselt_number =
70  nusseltNumberAnnulus(Re, Pr, diameter_ratio, pipe_aspect_ratio);
71  return {velocity, nusselt_number};
72 }
double reynoldsNumber(double const velocity_norm, double const pipe_diameter, double const viscosity, double const density)
Definition: Physics.h:26
double prandtlNumber(double const &viscosity, double const &heat_capacity, double const &heat_conductivity)
Definition: Physics.h:19
double nusseltNumberAnnulus(double const reynolds_number, double const prandtl_number, double const diameter_ratio, double const pipe_aspect_ratio)
Definition: Physics.h:63

References ProcessLib::HeatTransportBHE::BHE::Pipe::area(), ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::density, ProcessLib::HeatTransportBHE::BHE::Pipe::diameter, ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::dynamic_viscosity, nusseltNumberAnnulus(), ProcessLib::HeatTransportBHE::BHE::Pipe::outsideArea(), ProcessLib::HeatTransportBHE::BHE::Pipe::outsideDiameter(), prandtlNumber(), reynoldsNumber(), ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::specific_heat_capacity, and ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::thermal_conductivity.

Referenced by ProcessLib::HeatTransportBHE::BHE::BHECommonCoaxial::updateHeatTransferCoefficients().

◆ calculateThermoMechanicalFlowPropertiesPipe()

ThermoMechanicalFlowProperties ProcessLib::HeatTransportBHE::BHE::calculateThermoMechanicalFlowPropertiesPipe ( Pipe const &  pipe,
double const  length,
RefrigerantProperties const &  fluid,
double const  flow_rate 
)
inline

Definition at line 30 of file ThermoMechanicalFlowProperties.h.

34 {
35  double const Pr =
36  prandtlNumber(fluid.dynamic_viscosity, fluid.specific_heat_capacity,
37  fluid.thermal_conductivity);
38 
39  double const velocity = flow_rate / pipe.area();
40  double const Re = reynoldsNumber(velocity, pipe.diameter,
41  fluid.dynamic_viscosity, fluid.density);
42  double const nusselt_number = nusseltNumber(Re, Pr, pipe.diameter, length);
43  return {velocity, nusselt_number};
44 }
double nusseltNumber(double const reynolds_number, double const prandtl_number, double const pipe_diameter, double const pipe_length)
Definition: Physics.h:34

References ProcessLib::HeatTransportBHE::BHE::Pipe::area(), ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::density, ProcessLib::HeatTransportBHE::BHE::Pipe::diameter, ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::dynamic_viscosity, nusseltNumber(), prandtlNumber(), reynoldsNumber(), ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::specific_heat_capacity, and ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::thermal_conductivity.

Referenced by ProcessLib::HeatTransportBHE::BHE::BHE_1P::updateHeatTransferCoefficients(), ProcessLib::HeatTransportBHE::BHE::BHE_1U::updateHeatTransferCoefficients(), ProcessLib::HeatTransportBHE::BHE::BHE_2U::updateHeatTransferCoefficients(), and ProcessLib::HeatTransportBHE::BHE::BHECommonCoaxial::updateHeatTransferCoefficients().

◆ coaxialPipesAnnulusDiameter()

double ProcessLib::HeatTransportBHE::BHE::coaxialPipesAnnulusDiameter ( Pipe const &  inner_pipe,
Pipe const &  outer_pipe 
)
inline

Definition at line 57 of file Pipe.h.

59 {
60  return outer_pipe.diameter - inner_pipe.diameter -
61  2 * inner_pipe.wall_thickness;
62 }

References ProcessLib::HeatTransportBHE::BHE::Pipe::diameter, and ProcessLib::HeatTransportBHE::BHE::Pipe::wall_thickness.

Referenced by calculateAdvectiveThermalResistance().

◆ compute_R_gg()

double ProcessLib::HeatTransportBHE::BHE::compute_R_gg ( double const  chi,
double const  R_gs,
double const  R_ar,
double const  R_g 
)

Definition at line 108 of file BHE_1U.cpp.

110 {
111  double const R_gg = 2.0 * R_gs * (R_ar - 2.0 * chi * R_g) /
112  (2.0 * R_gs - R_ar + 2.0 * chi * R_g);
113  if (!std::isfinite(R_gg))
114  {
115  OGS_FATAL(
116  "Error!!! Grout Thermal Resistance is an infinite number! The "
117  "simulation will be stopped!");
118  }
119 
120  return R_gg;
121 }
#define OGS_FATAL(...)
Definition: Error.h:26

References OGS_FATAL.

Referenced by thermalResistancesGroutSoil().

◆ compute_R_gg_2U()

double ProcessLib::HeatTransportBHE::BHE::compute_R_gg_2U ( double const  chi,
double const  R_gs,
double const  R_ar,
double const  R_g 
)

Definition at line 126 of file BHE_2U.cpp.

128 {
129  double const R_gg = 2.0 * R_gs * (R_ar - 2.0 * chi * R_g) /
130  (2.0 * R_gs - R_ar + 2.0 * chi * R_g);
131  if (!std::isfinite(R_gg))
132  {
133  OGS_FATAL(
134  "Error!!! Grout Thermal Resistance is an infinite number! The "
135  "simulation will be stopped!");
136  }
137 
138  return R_gg;
139 }

References OGS_FATAL.

Referenced by thermalResistancesGroutSoil2U().

◆ compute_R_gs()

double ProcessLib::HeatTransportBHE::BHE::compute_R_gs ( double const  chi,
double const  R_g 
)

Definition at line 103 of file BHE_1U.cpp.

104 {
105  return (1 - chi) * R_g;
106 }

Referenced by thermalResistancesGroutSoil().

◆ compute_R_gs_2U()

double ProcessLib::HeatTransportBHE::BHE::compute_R_gs_2U ( double const  chi,
double const  R_g 
)

Definition at line 121 of file BHE_2U.cpp.

122 {
123  return (1 - chi) * R_g;
124 }

Referenced by thermalResistancesGroutSoil2U().

◆ createBHE1PType()

template<typename T_BHE >
T_BHE ProcessLib::HeatTransportBHE::BHE::createBHE1PType ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)

Definition at line 78 of file CreateBHE1PType.cpp.

83 {
84  auto SinglePipeType = parseBHE1PTypeConfig(config, curves);
85  return {std::get<0>(SinglePipeType), std::get<1>(SinglePipeType),
86  std::get<2>(SinglePipeType), std::get<3>(SinglePipeType),
87  std::get<4>(SinglePipeType), std::get<5>(SinglePipeType)};
88 }
static std::tuple< BoreholeGeometry, RefrigerantProperties, GroutParameters, FlowAndTemperatureControl, PipeConfiguration1PType, bool > parseBHE1PTypeConfig(BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)

References parseBHE1PTypeConfig().

◆ createBHE1PType< BHE_1P >()

template BHE_1P ProcessLib::HeatTransportBHE::BHE::createBHE1PType< BHE_1P > ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)

◆ createBHECoaxial()

template<typename T_BHE >
T_BHE ProcessLib::HeatTransportBHE::BHE::createBHECoaxial ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)

Definition at line 78 of file CreateBHECoaxial.cpp.

83 {
84  auto coaxial = parseBHECoaxialConfig(config, curves);
85  return {std::get<0>(coaxial), std::get<1>(coaxial), std::get<2>(coaxial),
86  std::get<3>(coaxial), std::get<4>(coaxial), std::get<5>(coaxial)};
87 }
static std::tuple< BoreholeGeometry, RefrigerantProperties, GroutParameters, FlowAndTemperatureControl, PipeConfigurationCoaxial, bool > parseBHECoaxialConfig(BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)

References parseBHECoaxialConfig().

◆ createBHECoaxial< BHE_CXA >()

template BHE_CXA ProcessLib::HeatTransportBHE::BHE::createBHECoaxial< BHE_CXA > ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)

◆ createBHECoaxial< BHE_CXC >()

template BHE_CXC ProcessLib::HeatTransportBHE::BHE::createBHECoaxial< BHE_CXC > ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)

◆ createBHEUType()

template<typename T_BHE >
T_BHE ProcessLib::HeatTransportBHE::BHE::createBHEUType ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)

Definition at line 82 of file CreateBHEUType.cpp.

87 {
88  auto UType = parseBHEUTypeConfig(config, curves);
89  return {std::get<0>(UType), std::get<1>(UType), std::get<2>(UType),
90  std::get<3>(UType), std::get<4>(UType), std::get<5>(UType)};
91 }
static std::tuple< BoreholeGeometry, RefrigerantProperties, GroutParameters, FlowAndTemperatureControl, PipeConfigurationUType, bool > parseBHEUTypeConfig(BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves)

References parseBHEUTypeConfig().

◆ createBHEUType< BHE_1U >()

template BHE_1U ProcessLib::HeatTransportBHE::BHE::createBHEUType< BHE_1U > ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)

◆ createBHEUType< BHE_2U >()

template BHE_2U ProcessLib::HeatTransportBHE::BHE::createBHEUType< BHE_2U > ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)

◆ createBoreholeGeometry()

BoreholeGeometry ProcessLib::HeatTransportBHE::BHE::createBoreholeGeometry ( BaseLib::ConfigTree const &  config)
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__borehole__length
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__borehole__diameter

Definition at line 21 of file BoreholeGeometry.cpp.

22 {
23  const auto borehole_length =
25  config.getConfigParameter<double>("length");
26  const auto borehole_diameter =
28  config.getConfigParameter<double>("diameter");
29  return {borehole_length, borehole_diameter};
30 }

References BaseLib::ConfigTree::getConfigParameter().

Referenced by parseBHE1PTypeConfig(), parseBHECoaxialConfig(), and parseBHEUTypeConfig().

◆ createFlowAndTemperatureControl()

FlowAndTemperatureControl ProcessLib::HeatTransportBHE::BHE::createFlowAndTemperatureControl ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves,
RefrigerantProperties const &  refrigerant 
)
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__type
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__TemperatureCurveConstantFlow__flow_rate
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__TemperatureCurveConstantFlow__temperature_curve
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__TemperatureCurveFlowCurve__flow_rate_curve
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__TemperatureCurveFlowCurve__temperature_curve
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__FixedPowerConstantFlow__power
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__FixedPowerConstantFlow__flow_rate
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__FixedPowerFlowCurve__flow_rate_curve
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__FixedPowerFlowCurve__power
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__PowerCurveConstantFlow__power_curve
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__PowerCurveConstantFlow__flow_rate
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__BuildingPowerCurveConstantFlow__power_curve
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__BuildingPowerCurveConstantFlow__cop_heating_curve
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control__BuildingPowerCurveConstantFlow__flow_rate

Definition at line 25 of file CreateFlowAndTemperatureControl.cpp.

31 {
33  auto const type = config.getConfigParameter<std::string>("type");
34  if (type == "TemperatureCurveConstantFlow")
35  {
37  auto const flow_rate = config.getConfigParameter<double>("flow_rate");
38 
39  auto const& temperature_curve = *BaseLib::getOrError(
40  curves,
42  config.getConfigParameter<std::string>("temperature_curve"),
43  "Required temperature curve not found.");
44 
45  return TemperatureCurveConstantFlow{flow_rate, temperature_curve};
46  }
47  if (type == "TemperatureCurveFlowCurve")
48  {
49  auto const& flow_rate_curve = *BaseLib::getOrError(
50  curves,
52  config.getConfigParameter<std::string>("flow_rate_curve"),
53  "Required flow curve not found.");
54 
55  auto const& temperature_curve = *BaseLib::getOrError(
56  curves,
58  config.getConfigParameter<std::string>("temperature_curve"),
59  "Required temperature curve not found.");
60 
61  return TemperatureCurveFlowCurve{flow_rate_curve, temperature_curve};
62  }
63  if (type == "FixedPowerConstantFlow")
64  {
66  auto const power = config.getConfigParameter<double>("power");
67 
69  auto const flow_rate = config.getConfigParameter<double>("flow_rate");
70  return FixedPowerConstantFlow{flow_rate, power,
71  refrigerant.specific_heat_capacity,
72  refrigerant.density};
73  }
74 
75  if (type == "FixedPowerFlowCurve")
76  {
77  auto const& flow_rate_curve = *BaseLib::getOrError(
78  curves,
80  config.getConfigParameter<std::string>("flow_rate_curve"),
81  "Required flow rate curve not found.");
82 
84  auto const power = config.getConfigParameter<double>("power");
85 
86  return FixedPowerFlowCurve{flow_rate_curve, power,
87  refrigerant.specific_heat_capacity,
88  refrigerant.density};
89  }
90 
91  if (type == "PowerCurveConstantFlow")
92  {
93  auto const& power_curve = *BaseLib::getOrError(
94  curves,
96  config.getConfigParameter<std::string>("power_curve"),
97  "Required power curve not found.");
98 
100  auto const flow_rate = config.getConfigParameter<double>("flow_rate");
101 
102  return PowerCurveConstantFlow{power_curve, flow_rate,
103  refrigerant.specific_heat_capacity,
104  refrigerant.density};
105  }
106 
107  if (type == "BuildingPowerCurveConstantFlow")
108  {
109  auto const& power_curve = *BaseLib::getOrError(
110  curves,
112  config.getConfigParameter<std::string>("power_curve"),
113  "Required power curve not found.");
114 
115  auto const& cop_heating_curve = *BaseLib::getOrError(
116  curves,
118  config.getConfigParameter<std::string>("cop_heating_curve"),
119  "Required power curve not found.");
120 
121  BuildingPowerCurves const building_power_curves{power_curve,
122  cop_heating_curve};
123 
125  auto const flow_rate = config.getConfigParameter<double>("flow_rate");
126 
127  return BuildingPowerCurveConstantFlow{
128  building_power_curves, flow_rate,
129  refrigerant.specific_heat_capacity, refrigerant.density};
130  }
131  OGS_FATAL("FlowAndTemperatureControl type '{:s}' is not implemented.",
132  type);
133 }
Map::mapped_type & getOrError(Map &map, Key const &key, std::string const &error_message)
Definition: Algorithm.h:147

References ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::density, BaseLib::ConfigTree::getConfigParameter(), BaseLib::getOrError(), OGS_FATAL, and ProcessLib::HeatTransportBHE::BHE::RefrigerantProperties::specific_heat_capacity.

Referenced by parseBHE1PTypeConfig(), parseBHECoaxialConfig(), and parseBHEUTypeConfig().

◆ createGroutParameters()

GroutParameters ProcessLib::HeatTransportBHE::BHE::createGroutParameters ( BaseLib::ConfigTree const &  config)
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__grout__density
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__grout__porosity
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__grout__specific_heat_capacity
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__grout__thermal_conductivity

Definition at line 21 of file GroutParameters.cpp.

22 {
23  const auto grout_density =
25  config.getConfigParameter<double>("density");
26  const auto grout_porosity =
28  config.getConfigParameter<double>("porosity");
29  const auto grout_heat_capacity =
31  config.getConfigParameter<double>("specific_heat_capacity");
32  const auto grout_thermal_conductivity =
34  config.getConfigParameter<double>("thermal_conductivity");
35  return {grout_density, grout_porosity, grout_heat_capacity,
36  grout_thermal_conductivity};
37 }

References BaseLib::ConfigTree::getConfigParameter().

Referenced by parseBHE1PTypeConfig(), parseBHECoaxialConfig(), and parseBHEUTypeConfig().

◆ createPipe()

Pipe ProcessLib::HeatTransportBHE::BHE::createPipe ( BaseLib::ConfigTree const &  config)
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__inlet__diameter
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__inlet__wall_thickness
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__inlet__wall_thermal_conductivity

Definition at line 21 of file Pipe.cpp.

22 {
24  const auto diameter = config.getConfigParameter<double>("diameter");
25  const auto wall_thickness =
27  config.getConfigParameter<double>("wall_thickness");
28  const auto wall_thermal_conductivity =
30  config.getConfigParameter<double>("wall_thermal_conductivity");
31  return {diameter, wall_thickness, wall_thermal_conductivity};
32 }

References BaseLib::ConfigTree::getConfigParameter().

Referenced by parseBHE1PTypeConfig(), parseBHECoaxialConfig(), and parseBHEUTypeConfig().

◆ createRefrigerantProperties()

RefrigerantProperties ProcessLib::HeatTransportBHE::BHE::createRefrigerantProperties ( BaseLib::ConfigTree const &  config)
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__refrigerant__density
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__refrigerant__viscosity
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__refrigerant__specific_heat_capacity
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__refrigerant__thermal_conductivity
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__refrigerant__reference_temperature

Definition at line 21 of file RefrigerantProperties.cpp.

23 {
24  auto const refrigerant_density =
26  config.getConfigParameter<double>("density");
27  auto const refrigerant_viscosity =
29  config.getConfigParameter<double>("viscosity");
30  auto const refrigerant_heat_capacity =
32  config.getConfigParameter<double>("specific_heat_capacity");
33  auto const refrigerant_thermal_conductivity =
35  config.getConfigParameter<double>("thermal_conductivity");
36  auto const refrigerant_reference_temperature =
38  config.getConfigParameter<double>("reference_temperature");
39  return {refrigerant_viscosity, refrigerant_density,
40  refrigerant_thermal_conductivity, refrigerant_heat_capacity,
41  refrigerant_reference_temperature};
42 }

References BaseLib::ConfigTree::getConfigParameter().

Referenced by parseBHE1PTypeConfig(), parseBHECoaxialConfig(), and parseBHEUTypeConfig().

◆ nusseltNumber()

double ProcessLib::HeatTransportBHE::BHE::nusseltNumber ( double const  reynolds_number,
double const  prandtl_number,
double const  pipe_diameter,
double const  pipe_length 
)
inline

Definition at line 34 of file Physics.h.

38 {
39  if (reynolds_number < 2300.0)
40  {
41  return 4.364;
42  }
43  if (reynolds_number < 10000.0)
44  {
45  double const gamma = (reynolds_number - 2300) / (10000 - 2300);
46 
47  return (1.0 - gamma) * 4.364 +
48  gamma *
49  ((0.0308 / 8.0 * 1.0e4 * prandtl_number) /
50  (1.0 + 12.7 * std::sqrt(0.0308 / 8.0) *
51  (std::pow(prandtl_number, 2.0 / 3.0) - 1.0)) *
52  (1.0 + std::pow(pipe_diameter / pipe_length, 2.0 / 3.0)));
53  }
54 
55  double const xi = std::pow(1.8 * std::log10(reynolds_number) - 1.5, -2.0);
56  return (xi / 8.0 * reynolds_number * prandtl_number) /
57  (1.0 + 12.7 * std::sqrt(xi / 8.0) *
58  (std::pow(prandtl_number, 2.0 / 3.0) - 1.0)) *
59  (1.0 + std::pow(pipe_diameter / pipe_length, 2.0 / 3.0));
60 }

Referenced by calculateThermoMechanicalFlowPropertiesPipe().

◆ nusseltNumberAnnulus()

double ProcessLib::HeatTransportBHE::BHE::nusseltNumberAnnulus ( double const  reynolds_number,
double const  prandtl_number,
double const  diameter_ratio,
double const  pipe_aspect_ratio 
)
inline

Definition at line 63 of file Physics.h.

67 {
68  if (reynolds_number < 2300.0)
69  {
70  return 3.66 + (4.0 - 0.102 / (diameter_ratio + 0.02)) *
71  std::pow(diameter_ratio, 0.04);
72  }
73  if (reynolds_number < 10000.0)
74  {
75  double const gamma = (reynolds_number - 2300) / (10000 - 2300);
76 
77  return (1.0 - gamma) *
78  (3.66 + (4.0 - 0.102 / (diameter_ratio + 0.02))) *
79  std::pow(diameter_ratio, 0.04) +
80  gamma *
81  ((0.0308 / 8.0 * 1.0e4 * prandtl_number) /
82  (1.0 + 12.7 * std::sqrt(0.0308 / 8.0) *
83  (std::pow(prandtl_number, 2.0 / 3.0) - 1.0)) *
84  (1.0 + std::pow(pipe_aspect_ratio, 2.0 / 3.0)) *
85  ((0.86 * std::pow(diameter_ratio, 0.84) + 1.0 -
86  0.14 * std::pow(diameter_ratio, 0.6)) /
87  (1.0 + diameter_ratio)));
88  }
89  double const xi = std::pow(1.8 * std::log10(reynolds_number) - 1.5, -2.0);
90  return (xi / 8.0 * reynolds_number * prandtl_number) /
91  (1.0 + 12.7 * std::sqrt(xi / 8.0) *
92  (std::pow(prandtl_number, 2.0 / 3.0) - 1.0)) *
93  (1.0 + std::pow(pipe_aspect_ratio, 2.0 / 3.0)) *
94  ((0.86 * std::pow(diameter_ratio, 0.84) + 1.0 -
95  0.14 * std::pow(diameter_ratio, 0.6)) /
96  (1.0 + diameter_ratio));
97 }

Referenced by calculateThermoMechanicalFlowPropertiesAnnulus().

◆ parseBHE1PTypeConfig()

static std::tuple<BoreholeGeometry, RefrigerantProperties, GroutParameters, FlowAndTemperatureControl, PipeConfiguration1PType, bool> ProcessLib::HeatTransportBHE::BHE::parseBHE1PTypeConfig ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)
static
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__use_bhe_pipe_network
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__borehole
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__inlet
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__longitudinal_dispersion_length
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__grout
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__refrigerant
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control

Definition at line 28 of file CreateBHE1PType.cpp.

33 {
34  // if the BHE is using python boundary condition
35  auto const bhe_if_use_python_bc_conf =
37  config.getConfigParameter<bool>("use_bhe_pipe_network", false);
38 
39  if (bhe_if_use_python_bc_conf)
40  {
41  DBUG("BHE 1P using python boundary conditions.");
42  }
43 
44  auto const borehole_geometry =
46  createBoreholeGeometry(config.getConfigSubtree("borehole"));
47 
49  auto const& pipes_config = config.getConfigSubtree("pipes");
51  Pipe const inlet_pipe = createPipe(pipes_config.getConfigSubtree("inlet"));
52 
53  const auto pipe_longitudinal_dispersion_length =
55  pipes_config.getConfigParameter<double>(
56  "longitudinal_dispersion_length");
57  PipeConfiguration1PType const pipes{inlet_pipe,
58  pipe_longitudinal_dispersion_length};
59 
61  auto const grout = createGroutParameters(config.getConfigSubtree("grout"));
62 
63  auto const refrigerant =
65  createRefrigerantProperties(config.getConfigSubtree("refrigerant"));
66 
67  auto const flowAndTemperatureControl = createFlowAndTemperatureControl(
69  config.getConfigSubtree("flow_and_temperature_control"),
70  curves,
71  refrigerant);
72 
73  return {borehole_geometry, refrigerant, grout,
74  flowAndTemperatureControl, pipes, bhe_if_use_python_bc_conf};
75 }
void DBUG(char const *fmt, Args const &... args)
Definition: Logging.h:27
RefrigerantProperties createRefrigerantProperties(BaseLib::ConfigTree const &config)
Pipe createPipe(BaseLib::ConfigTree const &config)
Definition: Pipe.cpp:21
FlowAndTemperatureControl createFlowAndTemperatureControl(BaseLib::ConfigTree const &config, std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &curves, RefrigerantProperties const &refrigerant)
GroutParameters createGroutParameters(BaseLib::ConfigTree const &config)
BoreholeGeometry createBoreholeGeometry(BaseLib::ConfigTree const &config)

References createBoreholeGeometry(), createFlowAndTemperatureControl(), createGroutParameters(), createPipe(), createRefrigerantProperties(), DBUG(), BaseLib::ConfigTree::getConfigParameter(), and BaseLib::ConfigTree::getConfigSubtree().

Referenced by createBHE1PType().

◆ parseBHECoaxialConfig()

static std::tuple<BoreholeGeometry, RefrigerantProperties, GroutParameters, FlowAndTemperatureControl, PipeConfigurationCoaxial, bool> ProcessLib::HeatTransportBHE::BHE::parseBHECoaxialConfig ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)
static
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__use_bhe_pipe_network
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__borehole
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__outer
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__inner
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__longitudinal_dispersion_length
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__grout
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__refrigerant
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control

Definition at line 29 of file CreateBHECoaxial.cpp.

34 {
35  // if the BHE is using python boundary condition
36  auto const bhe_if_use_python_bc_conf =
38  config.getConfigParameter<bool>("use_bhe_pipe_network", false);
39  DBUG("If using python boundary condition : {:s}",
40  (bhe_if_use_python_bc_conf) ? "true" : "false");
41 
42  auto const borehole_geometry =
44  createBoreholeGeometry(config.getConfigSubtree("borehole"));
45 
47  auto const& pipes_config = config.getConfigSubtree("pipes");
49  Pipe const outer_pipe = createPipe(pipes_config.getConfigSubtree("outer"));
50  Pipe const inner_pipe =
52  createPipe(pipes_config.getConfigSubtree("inner"));
53  const auto pipe_longitudinal_dispersion_length =
55  pipes_config.getConfigParameter<double>(
56  "longitudinal_dispersion_length");
57  PipeConfigurationCoaxial const pipes{inner_pipe, outer_pipe,
58  pipe_longitudinal_dispersion_length};
59 
61  auto const grout = createGroutParameters(config.getConfigSubtree("grout"));
62 
63  auto const refrigerant =
65  createRefrigerantProperties(config.getConfigSubtree("refrigerant"));
66 
67  auto const flowAndTemperatureControl = createFlowAndTemperatureControl(
69  config.getConfigSubtree("flow_and_temperature_control"),
70  curves,
71  refrigerant);
72 
73  return {borehole_geometry, refrigerant, grout,
74  flowAndTemperatureControl, pipes, bhe_if_use_python_bc_conf};
75 }

References createBoreholeGeometry(), createFlowAndTemperatureControl(), createGroutParameters(), createPipe(), createRefrigerantProperties(), DBUG(), BaseLib::ConfigTree::getConfigParameter(), and BaseLib::ConfigTree::getConfigSubtree().

Referenced by createBHECoaxial().

◆ parseBHEUTypeConfig()

static std::tuple<BoreholeGeometry, RefrigerantProperties, GroutParameters, FlowAndTemperatureControl, PipeConfigurationUType, bool> ProcessLib::HeatTransportBHE::BHE::parseBHEUTypeConfig ( BaseLib::ConfigTree const &  config,
std::map< std::string, std::unique_ptr< MathLib::PiecewiseLinearInterpolation >> const &  curves 
)
static
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__use_bhe_pipe_network
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__borehole
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__inlet
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__outlet
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__distance_between_pipes
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__pipes__longitudinal_dispersion_length
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__grout
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__refrigerant
Input File Parameter:
prj__processes__process__HEAT_TRANSPORT_BHE__borehole_heat_exchangers__borehole_heat_exchanger__flow_and_temperature_control

Definition at line 30 of file CreateBHEUType.cpp.

35 {
36  // if the BHE is using python boundary condition
37  auto const bhe_if_use_python_bc_conf =
39  config.getConfigParameter<bool>("use_bhe_pipe_network", false);
40  DBUG("If using python boundary condition : {:s}",
41  (bhe_if_use_python_bc_conf) ? "true" : "false");
42 
43  auto const borehole_geometry =
45  createBoreholeGeometry(config.getConfigSubtree("borehole"));
46 
48  auto const& pipes_config = config.getConfigSubtree("pipes");
50  Pipe const inlet_pipe = createPipe(pipes_config.getConfigSubtree("inlet"));
51  Pipe const outlet_pipe =
53  createPipe(pipes_config.getConfigSubtree("outlet"));
54  const auto pipe_distance =
56  pipes_config.getConfigParameter<double>("distance_between_pipes");
57  const auto pipe_longitudinal_dispersion_length =
59  pipes_config.getConfigParameter<double>(
60  "longitudinal_dispersion_length");
61  PipeConfigurationUType const pipes{inlet_pipe, outlet_pipe, pipe_distance,
62  pipe_longitudinal_dispersion_length};
63 
65  auto const grout = createGroutParameters(config.getConfigSubtree("grout"));
66 
67  auto const refrigerant =
69  createRefrigerantProperties(config.getConfigSubtree("refrigerant"));
70 
71  auto const flowAndTemperatureControl = createFlowAndTemperatureControl(
73  config.getConfigSubtree("flow_and_temperature_control"),
74  curves,
75  refrigerant);
76 
77  return {borehole_geometry, refrigerant, grout,
78  flowAndTemperatureControl, pipes, bhe_if_use_python_bc_conf};
79 }

References createBoreholeGeometry(), createFlowAndTemperatureControl(), createGroutParameters(), createPipe(), createRefrigerantProperties(), DBUG(), BaseLib::ConfigTree::getConfigParameter(), and BaseLib::ConfigTree::getConfigSubtree().

Referenced by createBHEUType().

◆ prandtlNumber()

double ProcessLib::HeatTransportBHE::BHE::prandtlNumber ( double const &  viscosity,
double const &  heat_capacity,
double const &  heat_conductivity 
)
inline

◆ reynoldsNumber()

double ProcessLib::HeatTransportBHE::BHE::reynoldsNumber ( double const  velocity_norm,
double const  pipe_diameter,
double const  viscosity,
double const  density 
)
inline

Definition at line 26 of file Physics.h.

30 {
31  return velocity_norm * pipe_diameter / (viscosity / density);
32 }

References MaterialPropertyLib::viscosity.

Referenced by calculateThermoMechanicalFlowPropertiesAnnulus(), and calculateThermoMechanicalFlowPropertiesPipe().

◆ thermalResistancesGroutSoil()

std::array<double, 3> ProcessLib::HeatTransportBHE::BHE::thermalResistancesGroutSoil ( double const  chi,
double const  R_ar,
double const  R_g 
)

Thermal resistances due to grout-soil exchange.

Check if constraints regarding negative thermal resistances are violated apply correction procedure. Section (1.5.5) in FEFLOW White Papers Vol V.

Definition at line 128 of file BHE_1U.cpp.

131 {
132  double R_gs = compute_R_gs(chi, R_g);
133  double R_gg =
134  compute_R_gg(chi, R_gs, R_ar, R_g); // Resulting thermal resistances.
135  double new_chi = chi;
136 
137  auto constraint = [&]()
138  { return 1.0 / ((1.0 / R_gg) + (1.0 / (2.0 * R_gs))); };
139 
140  std::array<double, 3> const multiplier{chi * 2.0 / 3.0, chi * 1.0 / 3.0,
141  0.0};
142  for (double m_chi : multiplier)
143  {
144  if (constraint() >= 0)
145  {
146  break;
147  }
148  DBUG(
149  "Warning! Correction procedure was applied due to negative thermal "
150  "resistance! Chi = {:f}.\n",
151  m_chi);
152 
153  R_gs = compute_R_gs(m_chi, R_g);
154  R_gg = compute_R_gg(m_chi, R_gs, R_ar, R_g);
155  new_chi = m_chi;
156  }
157 
158  return {new_chi, R_gg, R_gs};
159 }
double compute_R_gg(double const chi, double const R_gs, double const R_ar, double const R_g)
Definition: BHE_1U.cpp:108
double compute_R_gs(double const chi, double const R_g)
Definition: BHE_1U.cpp:103

References compute_R_gg(), compute_R_gs(), and DBUG().

Referenced by ProcessLib::HeatTransportBHE::BHE::BHE_1U::calcThermalResistances().

◆ thermalResistancesGroutSoil2U()

std::array<double, 4> ProcessLib::HeatTransportBHE::BHE::thermalResistancesGroutSoil2U ( double const  chi,
double const  R_ar_1,
double const  R_ar_2,
double const  R_g 
)

Thermal resistances due to grout-soil exchange.

Check if constraints regarding negative thermal resistances are violated apply correction procedure. Section (1.5.5) in FEFLOW White Papers Vol V.

Definition at line 146 of file BHE_2U.cpp.

150 {
151  double R_gs = compute_R_gs_2U(chi, R_g);
152  double R_gg_1 = compute_R_gg_2U(chi, R_gs, R_ar_1, R_g);
153  double R_gg_2 = compute_R_gg_2U(chi, R_gs, R_ar_2,
154  R_g); // Resulting thermal resistances.
155  double chi_new = chi;
156 
157  auto constraint = [&]()
158  { return 1.0 / ((1.0 / R_gg_1) + (1.0 / (2.0 * R_gs))); };
159 
160  std::array<double, 3> const multiplier{chi * 2.0 / 3.0, chi * 1.0 / 3.0,
161  0.0};
162  for (double m_chi : multiplier)
163  {
164  if (constraint() >= 0)
165  {
166  break;
167  }
168  DBUG(
169  "Warning! Correction procedure was applied due to negative thermal "
170  "resistance! Chi = {:f}.\n",
171  m_chi);
172  R_gs = compute_R_gs_2U(m_chi, R_g);
173  R_gg_1 = compute_R_gg_2U(m_chi, R_gs, R_ar_1, R_g);
174  R_gg_2 = compute_R_gg_2U(m_chi, R_gs, R_ar_2, R_g);
175  chi_new = m_chi;
176  }
177 
178  return {chi_new, R_gg_1, R_gg_2, R_gs};
179 }
double compute_R_gg_2U(double const chi, double const R_gs, double const R_ar, double const R_g)
Definition: BHE_2U.cpp:126
double compute_R_gs_2U(double const chi, double const R_g)
Definition: BHE_2U.cpp:121

References compute_R_gg_2U(), compute_R_gs_2U(), and DBUG().

Referenced by ProcessLib::HeatTransportBHE::BHE::BHE_2U::calcThermalResistances().