OGS
LiquidFlowProcess.cpp
Go to the documentation of this file.
1
13#include "LiquidFlowProcess.h"
14
15#include <cassert>
16
24
25namespace ProcessLib
26{
27namespace LiquidFlow
28{
30 std::string name, MeshLib::Mesh& mesh,
31 std::unique_ptr<AbstractJacobianAssembler>&& jacobian_assembler,
32 std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters,
33 unsigned const integration_order,
34 std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>&&
35 process_variables,
36 LiquidFlowData&& process_data,
37 SecondaryVariableCollection&& secondary_variables,
38 std::unique_ptr<ProcessLib::SurfaceFluxData>&& surfaceflux,
39 bool const is_linear)
40 : Process(std::move(name), mesh, std::move(jacobian_assembler), parameters,
41 integration_order, std::move(process_variables),
42 std::move(secondary_variables)),
43 _process_data(std::move(process_data)),
44 _shape_matrix_cache{integration_order},
45 _surfaceflux(std::move(surfaceflux)),
46 _is_linear(is_linear)
47{
48 DBUG("Create Liquid flow process.");
49
50 _hydraulic_flow = MeshLib::getOrCreateMeshProperty<double>(
51 mesh, "VolumetricFlowRate", MeshLib::MeshItemType::Node, 1);
52}
53
55 NumLib::LocalToGlobalIndexMap const& dof_table,
56 MeshLib::Mesh const& mesh,
57 unsigned const integration_order)
58{
59 int const mesh_space_dimension = _process_data.mesh_space_dimension;
60 ProcessLib::createLocalAssemblers<LiquidFlowLocalAssembler>(
61 mesh_space_dimension, mesh.getElements(), dof_table, _local_assemblers,
62 NumLib::IntegrationOrder{integration_order}, mesh.isAxiallySymmetric(),
64
66 "darcy_velocity",
68 mesh_space_dimension, getExtrapolator(), _local_assemblers,
70}
71
73 const double t, double const dt, std::vector<GlobalVector*> const& x,
74 std::vector<GlobalVector*> const& x_prev, int const process_id,
76{
77 DBUG("Assemble LiquidFlowProcess.");
78
79 std::vector<std::reference_wrapper<NumLib::LocalToGlobalIndexMap>>
80 dof_table = {std::ref(*_local_to_global_index_map)};
81
82 ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
83
84 // Call global assembler for each local assembly item.
87 pv.getActiveElementIDs(), dof_table, t, dt, x, x_prev, process_id, M, K,
88 b);
89
93
94 auto const residuum = computeResiduum(dt, *x[0], *x_prev[0], M, K, b);
95 transformVariableFromGlobalVector(residuum, 0 /*variable id*/,
97 *_hydraulic_flow, std::negate<double>());
98}
99
101 const double t, double const dt, std::vector<GlobalVector*> const& x,
102 std::vector<GlobalVector*> const& x_prev, int const process_id,
104{
105 DBUG("AssembleWithJacobian LiquidFlowProcess.");
106
107 std::vector<std::reference_wrapper<NumLib::LocalToGlobalIndexMap>>
108 dof_table = {std::ref(*_local_to_global_index_map)};
109 ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
110
111 // Call global assembler for each local assembly item.
114 _local_assemblers, pv.getActiveElementIDs(), dof_table, t, dt, x,
115 x_prev, process_id, M, K, b, Jac);
116}
117
119 double const t, double const dt, std::vector<GlobalVector*> const& x,
120 GlobalVector const& x_prev, int const process_id)
121{
122 DBUG("Compute the velocity for LiquidFlowProcess.");
123 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_tables;
124 dof_tables.reserve(x.size());
125 std::generate_n(std::back_inserter(dof_tables), x.size(),
126 [&]() { return _local_to_global_index_map.get(); });
127
128 ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
131 _local_assemblers, pv.getActiveElementIDs(), dof_tables, t, dt, x,
132 x_prev, process_id);
133}
134
136 std::size_t const element_id,
137 MathLib::Point3d const& p,
138 double const t,
139 std::vector<GlobalVector*> const& x) const
140{
141 // fetch local_x from primary variable
142 std::vector<GlobalIndexType> indices_cache;
143 auto const r_c_indices = NumLib::getRowColumnIndices(
144 element_id, *_local_to_global_index_map, indices_cache);
145 constexpr int process_id = 0; // monolithic scheme.
146 std::vector<double> local_x(x[process_id]->get(r_c_indices.rows));
147
148 return _local_assemblers[element_id]->getFlux(p, t, local_x);
149}
150
151// this is almost a copy of the implementation in the GroundwaterFlow
153 std::vector<GlobalVector*> const& x,
154 std::vector<GlobalVector*> const& /*x_prev*/,
155 const double t,
156 const double /*dt*/,
157 int const process_id)
158{
159 if (!_surfaceflux) // computing the surfaceflux is optional
160 {
161 return;
162 }
163
164 ProcessLib::ProcessVariable const& pv = getProcessVariables(process_id)[0];
165 _surfaceflux->integrate(x, t, *this, process_id, _integration_order, _mesh,
167}
168
169} // namespace LiquidFlow
170} // namespace ProcessLib
void DBUG(fmt::format_string< Args... > fmt, Args &&... args)
Definition Logging.h:30
Global vector based on Eigen vector.
Definition EigenVector.h:25
bool isAxiallySymmetric() const
Definition Mesh.h:137
std::vector< Element * > const & getElements() const
Get the element-vector for the mesh.
Definition Mesh.h:109
virtual std::vector< double > const & getIntPtDarcyVelocity(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, std::vector< double > &cache) const =0
Eigen::Vector3d getFlux(std::size_t const element_id, MathLib::Point3d const &p, double const t, std::vector< GlobalVector * > const &x) const override
void postTimestepConcreteProcess(std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, const double t, const double dt, int const process_id) override
std::vector< std::unique_ptr< LiquidFlowLocalAssemblerInterface > > _local_assemblers
void computeSecondaryVariableConcrete(double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id) override
void initializeConcreteProcess(NumLib::LocalToGlobalIndexMap const &dof_table, MeshLib::Mesh const &mesh, unsigned const integration_order) override
Process specific initialization called by initialize().
std::unique_ptr< ProcessLib::SurfaceFluxData > _surfaceflux
LiquidFlowProcess(std::string name, MeshLib::Mesh &mesh, std::unique_ptr< AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase > > const &parameters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable > > > &&process_variables, LiquidFlowData &&process_data, SecondaryVariableCollection &&secondary_variables, std::unique_ptr< ProcessLib::SurfaceFluxData > &&surfaceflux, bool const is_linear)
MeshLib::PropertyVector< double > * _hydraulic_flow
void assembleConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b) override
void assembleWithJacobianConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, GlobalMatrix &Jac) override
virtual void computeSecondaryVariable(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
std::vector< std::size_t > const & getActiveElementIDs() const
MeshLib::Mesh & _mesh
Definition Process.h:354
SecondaryVariableCollection _secondary_variables
Definition Process.h:359
std::vector< std::reference_wrapper< ProcessVariable > > const & getProcessVariables(const int process_id) const
Definition Process.h:155
VectorMatrixAssembler _global_assembler
Definition Process.h:364
unsigned const _integration_order
Definition Process.h:371
std::unique_ptr< NumLib::LocalToGlobalIndexMap > _local_to_global_index_map
Definition Process.h:357
NumLib::Extrapolator & getExtrapolator() const
Definition Process.h:196
Handles configuration of several secondary variables from the project file.
void addSecondaryVariable(std::string const &internal_name, SecondaryVariableFunctions &&fcts)
void assembleWithJacobian(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< std::reference_wrapper< NumLib::LocalToGlobalIndexMap > > const &dof_tables, const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, GlobalMatrix &Jac)
void assemble(std::size_t const mesh_item_id, LocalAssemblerInterface &local_assembler, std::vector< std::reference_wrapper< NumLib::LocalToGlobalIndexMap > > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b)
void finalizeVectorAssembly(VEC_T &)
General function to finalize the vector assembly.
bool finalizeMatrixAssembly(MAT_T &)
NumLib::LocalToGlobalIndexMap::RowColumnIndices getRowColumnIndices(std::size_t const id, NumLib::LocalToGlobalIndexMap const &dof_table, std::vector< GlobalIndexType > &indices)
GlobalVector computeResiduum(double const dt, GlobalVector const &x, GlobalVector const &x_prev, GlobalMatrix const &M, GlobalMatrix const &K, GlobalVector const &b)
SecondaryVariableFunctions makeExtrapolator(const unsigned num_components, NumLib::Extrapolator &extrapolator, LocalAssemblerCollection const &local_assemblers, typename NumLib::ExtrapolatableLocalAssemblerCollection< LocalAssemblerCollection >::IntegrationPointValuesMethod integration_point_values_method)
static void executeSelectedMemberOnDereferenced(Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)
static void executeSelectedMemberDereferenced(Object &object, Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)