25template <
typename ShapeFunction,
int GlobalDim>
27 double const t,
double const dt, Eigen::VectorXd
const& local_x,
28 Eigen::VectorXd
const& local_x_prev,
int const process_id,
29 std::vector<double>& local_M_data, std::vector<double>& local_K_data,
30 std::vector<double>& local_b_data)
32 if (process_id == this->_process_data.heat_transport_process_id)
34 assembleHeatTransportEquation(t, dt, local_x, local_M_data,
39 assembleHydraulicEquation(t, dt, local_x, local_x_prev, local_M_data,
40 local_K_data, local_b_data);
43template <
typename ShapeFunction,
int GlobalDim>
45 double const t,
double const dt, Eigen::VectorXd
const& local_x,
46 Eigen::VectorXd
const& local_x_prev, std::vector<double>& local_M_data,
47 std::vector<double>& local_K_data, std::vector<double>& local_b_data)
50 local_x.template segment<pressure_size>(pressure_index);
52 local_x.template segment<temperature_size>(temperature_index);
54 auto const local_T_prev =
55 local_x_prev.template segment<temperature_size>(temperature_index);
57 auto local_M = MathLib::createZeroedMatrix<LocalMatrixType>(
58 local_M_data, pressure_size, pressure_size);
59 auto local_K = MathLib::createZeroedMatrix<LocalMatrixType>(
60 local_K_data, pressure_size, pressure_size);
61 auto local_b = MathLib::createZeroedVector<LocalVectorType>(local_b_data,
67 auto const& process_data = this->_process_data;
69 *this->_process_data.media_map.getMedium(this->_element.getID());
70 auto const& liquid_phase = medium.phase(
"AqueousLiquid");
71 auto const& solid_phase = medium.phase(
"Solid");
75 .projected_specific_body_force_vectors[this->_element.getID()];
79 unsigned const n_integration_points =
80 this->_integration_method.getNumberOfPoints();
82 for (
unsigned ip(0); ip < n_integration_points; ip++)
86 auto const& ip_data = this->_ip_data[ip];
87 auto const& N = ip_data.N;
88 auto const& dNdx = ip_data.dNdx;
89 auto const& w = ip_data.integration_weight;
91 double p_int_pt = 0.0;
92 double T_int_pt = 0.0;
101 auto const porosity =
103 .template value<double>(vars, pos, t, dt);
104 auto const fluid_density =
106 .template value<double>(vars, pos, t, dt);
109 const double dfluid_density_dp =
111 .template dValue<double>(
116 auto const viscosity =
118 .template value<double>(vars, pos, t, dt);
122 auto const specific_storage =
124 .template value<double>(vars, pos, t, dt);
126 auto const intrinsic_permeability =
127 MaterialPropertyLib::formEigenTensor<GlobalDim>(
129 .value(vars, pos, t, dt));
131 intrinsic_permeability / viscosity;
136 (porosity * dfluid_density_dp / fluid_density + specific_storage) *
139 local_K.noalias() += w * dNdx.transpose() * K_over_mu * dNdx;
141 if (process_data.has_gravity)
144 w * fluid_density * dNdx.transpose() * K_over_mu * b;
147 if (!process_data.has_fluid_thermal_expansion)
154 auto const solid_thermal_expansion =
155 process_data.solid_thermal_expansion(t, pos)[0];
156 const double dfluid_density_dT =
159 .template dValue<double>(
162 double const Tdot_int_pt = (T_int_pt - local_T_prev.dot(N)) / dt;
163 auto const biot_constant = process_data.biot_constant(t, pos)[0];
164 const double eff_thermal_expansion =
165 3.0 * (biot_constant - porosity) * solid_thermal_expansion -
166 porosity * dfluid_density_dT / fluid_density;
167 local_b.noalias() += eff_thermal_expansion * Tdot_int_pt * w * N;
172template <
typename ShapeFunction,
int GlobalDim>
176 Eigen::VectorXd
const& local_x,
177 std::vector<double>& local_M_data,
178 std::vector<double>& local_K_data)
181 local_x.template segment<pressure_size>(pressure_index);
183 local_x.template segment<temperature_size>(temperature_index);
185 auto local_M = MathLib::createZeroedMatrix<LocalMatrixType>(
186 local_M_data, temperature_size, temperature_size);
187 auto local_K = MathLib::createZeroedMatrix<LocalMatrixType>(
188 local_K_data, temperature_size, temperature_size);
193 auto const& process_data = this->_process_data;
195 *process_data.media_map.getMedium(this->_element.getID());
196 auto const& liquid_phase = medium.phase(
"AqueousLiquid");
200 .projected_specific_body_force_vectors[this->_element.getID()];
204 unsigned const n_integration_points =
205 this->_integration_method.getNumberOfPoints();
207 std::vector<GlobalDimVectorType> ip_flux_vector;
208 double average_velocity_norm = 0.0;
209 ip_flux_vector.reserve(n_integration_points);
211 for (
unsigned ip(0); ip < n_integration_points; ip++)
215 auto const& ip_data = this->_ip_data[ip];
216 auto const& N = ip_data.N;
217 auto const& dNdx = ip_data.dNdx;
218 auto const& w = ip_data.integration_weight;
230 auto const porosity =
232 .template value<double>(vars, pos, t, dt);
236 auto const fluid_density =
238 .template value<double>(vars, pos, t, dt);
240 auto const specific_heat_capacity_fluid =
242 .template value<double>(vars, pos, t, dt);
245 local_M.noalias() += w *
246 this->getHeatEnergyCoefficient(
247 vars, porosity, fluid_density,
248 specific_heat_capacity_fluid, pos, t, dt) *
252 auto const viscosity =
254 .template value<double>(vars, pos, t, dt);
256 auto const intrinsic_permeability =
257 MaterialPropertyLib::formEigenTensor<GlobalDim>(
259 .value(vars, pos, t, dt));
262 intrinsic_permeability / viscosity;
264 process_data.has_gravity
266 (dNdx * local_p - fluid_density * b))
270 this->getThermalConductivityDispersivity(
271 vars, fluid_density, specific_heat_capacity_fluid, velocity,
275 w * dNdx.transpose() * thermal_conductivity_dispersivity * dNdx;
277 ip_flux_vector.emplace_back(velocity * fluid_density *
278 specific_heat_capacity_fluid);
279 average_velocity_norm += velocity.norm();
283 process_data.stabilizer, this->_ip_data, ip_flux_vector,
284 average_velocity_norm /
static_cast<double>(n_integration_points),
288template <
typename ShapeFunction,
int GlobalDim>
289std::vector<double>
const&
292 std::vector<GlobalVector*>
const& x,
293 std::vector<NumLib::LocalToGlobalIndexMap const*>
const& dof_table,
294 std::vector<double>& cache)
const
296 assert(x.size() == dof_table.size());
297 auto const n_processes = dof_table.size();
299 std::vector<std::vector<GlobalIndexType>> indices_of_all_coupled_processes;
300 indices_of_all_coupled_processes.reserve(n_processes);
301 for (std::size_t process_id = 0; process_id < n_processes; ++process_id)
305 assert(!indices.empty());
306 indices_of_all_coupled_processes.push_back(indices);
308 auto const local_xs =
311 return this->getIntPtDarcyVelocityLocal(t, local_xs, cache);
double liquid_phase_pressure
void setElementID(std::size_t element_id)
void setIntegrationPoint(unsigned integration_point)
void assembleForStaggeredScheme(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, int const process_id, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data) override
typename ShapeMatricesType::GlobalDimVectorType GlobalDimVectorType
void assembleHydraulicEquation(double const t, double const dt, Eigen::VectorXd const &local_x, Eigen::VectorXd const &local_x_prev, std::vector< double > &local_M_data, std::vector< double > &local_K_data, std::vector< double > &local_b_data)
void assembleHeatTransportEquation(double const t, double const dt, Eigen::VectorXd const &local_x, std::vector< double > &local_M_data, std::vector< double > &local_K_data)
typename ShapeMatricesType::GlobalDimMatrixType GlobalDimMatrixType
std::vector< double > const & getIntPtDarcyVelocity(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const override
void assembleAdvectionMatrix(IPData const &ip_data_vector, std::vector< FluxVectorType > const &ip_flux_vector, Eigen::MatrixBase< Derived > &laplacian_matrix)
void shapeFunctionInterpolate(const NodalValues &, const ShapeMatrix &)
std::vector< GlobalIndexType > getIndices(std::size_t const mesh_item_id, NumLib::LocalToGlobalIndexMap const &dof_table)
std::vector< double > getCoupledLocalSolutions(std::vector< GlobalVector * > const &global_solutions, std::vector< std::vector< GlobalIndexType > > const &indices)