22 std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
23 std::vector<std::unique_ptr<ParameterLib::ParameterBase>>
const& parameters,
24 unsigned const integration_order,
25 std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>&&
30 bool const ls_compute_only_upon_timestep_change)
31 :
Process(std::move(
name), mesh, std::move(jacobian_assembler), parameters,
32 integration_order, std::move(process_variables),
33 std::move(secondary_variables)),
36 _process_data(std::move(process_data)),
37 _ls_compute_only_upon_timestep_change{
38 ls_compute_only_upon_timestep_change}
41 this->_jacobian_assembler->setNonDeformationComponentIDs(
44 if (ls_compute_only_upon_timestep_change)
50 "Using the linear solver compute() method only upon timestep "
51 "change only makes sense for linear model equations.");
55 "You specified that the HeatConduction linear solver will do "
56 "the compute() step only upon timestep change. This is an expert "
57 "option. It is your responsibility to ensure that "
58 "the conditions for the correct use of this feature are met! "
59 "Otherwise OGS might compute garbage without being recognized. "
60 "There is no safety net!");
63 "You specified that the HeatConduction linear solver will do "
64 "the compute() step only upon timestep change. This option will "
65 "only be used by the Picard non-linear solver. The Newton-Raphson "
66 "non-linear solver will silently ignore this setting, i.e., it "
67 "won't do any harm, there, but you won't observe the speedup you "
75 unsigned const integration_order)
77 int const mesh_space_dimension =
_process_data.mesh_space_dimension;
91std::vector<std::vector<std::string>>
93 std::vector<std::reference_wrapper<MeshLib::Mesh>>
const& meshes)
95 DBUG(
"HeatConductionProcess initializeSubmeshOutput().");
97 std::vector<std::vector<std::string>> residuum_names{{
"HeatFlowRate"}};
100 meshes, residuum_names);
102 return residuum_names;
106 const double t,
double const dt, std::vector<GlobalVector*>
const& x,
107 std::vector<GlobalVector*>
const& x_prev,
int const process_id,
110 DBUG(
"Assemble HeatConductionProcess.");
117 const double t,
double const dt, std::vector<GlobalVector*>
const& x,
118 std::vector<GlobalVector*>
const& x_prev,
int const process_id,
121 DBUG(
"AssembleWithJacobian HeatConductionProcess.");
124 t, dt, x, x_prev, process_id, b, Jac);
128 double const t,
double const dt, std::vector<GlobalVector*>
const& x,
131 DBUG(
"Compute heat flux for HeatConductionProcess.");
133 std::vector<NumLib::LocalToGlobalIndexMap const*> dof_tables;
134 dof_tables.reserve(x.size());
135 std::generate_n(std::back_inserter(dof_tables), x.size(),
136 [&]() { return _local_to_global_index_map.get(); });
145 std::vector<GlobalVector*>
const& ,
156 std::vector<GlobalVector*>
const& x,
157 std::vector<GlobalVector*>
const& x_prev,
158 int const process_id)
MathLib::EigenMatrix GlobalMatrix
MathLib::EigenVector GlobalVector
void DBUG(fmt::format_string< Args... > fmt, Args &&... args)
void WARN(fmt::format_string< Args... > fmt, Args &&... args)
bool isAxiallySymmetric() const
std::vector< Element * > const & getElements() const
Get the element-vector for the mesh.
void assemble(double const t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b, std::vector< std::size_t > const *const sorted_element_subset=nullptr, bool const copy_residua_to_mesh=false)
void updateActiveElements()
void preOutput(double const t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id)
void initializeAssemblyOnSubmeshes(std::vector< std::reference_wrapper< MeshLib::Mesh > > const &submeshes, std::vector< std::vector< std::string > > const &residuum_names)
void assembleWithJacobian(double const t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalVector &b, GlobalMatrix &Jac, std::vector< std::size_t > const *const sorted_element_subset=nullptr, bool const copy_residua_to_mesh=false)
virtual std::vector< double > const & getIntPtHeatFlux(const double t, std::vector< GlobalVector * > const &x, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_table, std::vector< double > &cache) const =0
void computeSecondaryVariableConcrete(double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id) override
std::vector< std::unique_ptr< HeatConductionLocalAssemblerInterface > > local_assemblers_
std::vector< std::vector< std::string > > initializeAssemblyOnSubmeshes(std::vector< std::reference_wrapper< MeshLib::Mesh > > const &meshes) override
void preTimestepConcreteProcess(std::vector< GlobalVector * > const &, const double, const double, const int) override
void assembleWithJacobianConcreteProcess(const double t, double const, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalVector &b, GlobalMatrix &Jac) override
void initializeConcreteProcess(NumLib::LocalToGlobalIndexMap const &dof_table, MeshLib::Mesh const &mesh, unsigned const integration_order) override
Process specific initialization called by initialize().
HeatConductionProcess(std::string name, MeshLib::Mesh &mesh, std::unique_ptr< ProcessLib::AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase > > const ¶meters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable > > > &&process_variables, HeatConductionProcessData &&process_data, SecondaryVariableCollection &&secondary_variables, bool const is_linear, bool const ls_compute_only_upon_timestep_change)
HeatConductionProcessData _process_data
void preOutputConcreteProcess(const double t, double const dt, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id) override
void assembleConcreteProcess(const double t, double const, std::vector< GlobalVector * > const &x, std::vector< GlobalVector * > const &x_prev, int const process_id, GlobalMatrix &M, GlobalMatrix &K, GlobalVector &b) override
virtual void computeSecondaryVariable(std::size_t const mesh_item_id, std::vector< NumLib::LocalToGlobalIndexMap const * > const &dof_tables, double const t, double const dt, std::vector< GlobalVector * > const &x, GlobalVector const &x_prev, int const process_id)
Process(std::string name_, MeshLib::Mesh &mesh, std::unique_ptr< AbstractJacobianAssembler > &&jacobian_assembler, std::vector< std::unique_ptr< ParameterLib::ParameterBase > > const ¶meters, unsigned const integration_order, std::vector< std::vector< std::reference_wrapper< ProcessVariable > > > &&process_variables, SecondaryVariableCollection &&secondary_variables, const bool use_monolithic_scheme=true)
std::vector< std::size_t > const & getActiveElementIDs() const
SecondaryVariableCollection _secondary_variables
std::unique_ptr< ProcessLib::AbstractJacobianAssembler > _jacobian_assembler
NumLib::Extrapolator & getExtrapolator() const
Handles configuration of several secondary variables from the project file.
void createLocalAssemblers(std::vector< MeshLib::Element * > const &mesh_elements, NumLib::LocalToGlobalIndexMap const &dof_table, std::vector< std::unique_ptr< LocalAssemblerInterface > > &local_assemblers, ProviderOrOrder const &provider_or_order, ExtraCtorArgs &&... extra_ctor_args)
SecondaryVariableFunctions makeExtrapolator(const unsigned num_components, NumLib::Extrapolator &extrapolator, LocalAssemblerCollection const &local_assemblers, typename NumLib::ExtrapolatableLocalAssemblerCollection< LocalAssemblerCollection >::IntegrationPointValuesMethod integration_point_values_method)
static void executeSelectedMemberOnDereferenced(Method method, Container const &container, std::vector< std::size_t > const &active_container_ids, Args &&... args)